Информатика
Математика
Чертежи
Физика
Инженерка
Интегралы
Термех
Решение задач

Черчение

Матанализ
Сопромат
ТОЭ
Энергетика
Курсовая
Искусство
Электроника

Вычислительная математика и вычислительные системы

По определению DEC, кластер - это группа вычислительных машин, которые связаны между собою и функционируют как один узел обработки информации. Кластер функционирует как единая система, то есть для пользователя или прикладной задачи вся совокупность вычислительной техники выглядит как один компьютер. Именно это и является самым важным при построении кластерной системы.

Принципы построения параллельных вычислительных систем

Классификация вычислительных систем

Одним из наиболее распространенных способов классификации ЭВМ является систематика Флинна (Flynn), в рамках которой основное внимание при анализе архитектуры вычислительных систем уделяется способам взаимодействия последовательностей (потоков) выполняемых команд и обрабатываемых данных. В результате такого подхода различают следующие основные типы систем [9, 22, 29, 31]:

Следует отметить, что хотя систематика Флинна широко используется при конкретизации типов компьютерных систем, такая классификация приводит к тому, что практически все виды параллельных систем (несмотря на их существенную разнородность) относятся к одной группе MIMD. Как результат, многими исследователями предпринимались неоднократные попытки детализации систематики Флинна. Так, например, для класса MIMD предложена практически общепризнанная структурная схема [29, 31], в которой дальнейшее разделение типов многопроцессорных систем основывается на используемых способах организации оперативной памяти в этих системах (см. рис. 1.1). Данный поход позволяет различать два важных типа многопроцессорных систем - multiprocessors (мультипроцессоры или системы с общей разделяемой памятью) и multicomputers (мультикомпьютеры или системы с распределенной памятью).

Рис. 1.1. Структура класса многопроцессорных вычислительных систем

Далее для мультипроцессоров учитывается способ построения общей памяти. Возможный подход - использование единой (централизованной) общей памяти. Такой подход обеспечивает однородный доступ к памяти (uniform memory access or UMA) и служит основой для построения векторных суперкомпьютеров (parallel vector processor, PVP) и симметричных мультипроцессоров (symmetric multiprocessor or SMP). Среди примеров первой группы суперкомпьютер Cray T90, ко второй группе относятся IBM eServer p690, Sun Fire E15K, HP Superdome, SGI Origin 300 и др.

Общий доступ к данным может быть обеспечен и при физически распределенной памяти (при этом, естественно, длительность доступа уже не будет одинаковой для всех элементов памяти). Такой подход именуется как неоднородный доступ к памяти (non-uniform memory access or NUMA). Среди систем с таким типом памяти выделяют:

Поэтому для организации такой системы не подойдет обыкновенный сервер со стандартной архитектурой, вполне пригодный там, где не стоит жестких требований к производительности и времени простоя. Высокопроизводительные системы для глобальных корпоративных вычислений должны отличаться такими характеристиками, как повышенная производительность, масштабируемость, минимально допустимое время простоя.

Электротехника

Расчеты
Прочность
На главную
Лабы
Задачи
Реакторы