Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Алгоритмы маршрутизации Мультикомпьютеры Выбор топологии вычислительной системы Процессы и ресурсы Балансировка вычислительной нагрузки процессоров

Вычислительная математика и вычислительные системы

По определению DEC, кластер - это группа вычислительных машин, которые связаны между собою и функционируют как один узел обработки информации. Кластер функционирует как единая система, то есть для пользователя или прикладной задачи вся совокупность вычислительной техники выглядит как один компьютер. Именно это и является самым важным при построении кластерной системы.

Моделирование и анализ параллельных вычислений

Описание схемы параллельного выполнения алгоритма

Операции алгоритма, между которыми нет пути в рамках выбранной схемы вычислений, могут быть выполнены параллельно (для вычислительной схемы на рис. 2.1, например, параллельно могут быть выполнены сначала все операции умножения, а затем первые две операции вычитания). Возможный способ описания параллельного выполнения алгоритма может состоять в следующем [18].

Пусть p есть количество процессоров, используемых для выполнения алгоритма. Тогда для параллельного выполнения вычислений необходимо задать множество (расписание)

,

в котором для каждой операции iV указывается номер используемого для выполнения операции процессора Pi и время начала выполнения операции ti. Для того, чтобы расписание было реализуемым, необходимо выполнение следующих требований при задании множества Hp:

  1. формула, т.е. один и тот же процессор не должен назначаться разным операциям в один и тот же момент времени,
  2. формула, т.е. к назначаемому моменту выполнения операции все необходимые данные уже должны быть вычислены
Проблематика High Availability кластерных систем Сегодня в мире распространены несколько типов систем высокой готовности. Среди них кластерная система является воплощением технологий, которые обеспечивают высокий уровень отказоустойчивости при самой низкой стоимости. Отказоустойчивость кластера обеспечивается дублированием всех жизненно важных компонент. Максимально отказоустойчивая система должна не иметь ни единой точки, то есть активного элемента, отказ которого может привести к потере функциональности системы. Такую характеристику как правило называют - NSPF (No Single Point of Failure, - англ., отсутствие единой точки отказа). При построении систем высокой готовности, главная цель - обеспечить минимальное время простоя. Для того, чтобы система обладала высокими показатели готовности, необходимо: " чтобы ее компоненты были максимально надежными " чтобы она была отказоустойчивая, желательно, чтобы не имела точек отказов " а также важно, чтобы она была удобна в обслуживании и разрешала проводить замену компонент без останова Пренебрежение любым из указанных параметров, может привести к потере функциональности системы. Давайте коротко пройдемся по всем трём пунктам. Что касается обеспечения максимальной надежности, то она осуществляется путем использования электронных компонент высокой и сверхвысокой интеграции, поддержания нормальных режимов работы, в том числе тепловых. Отказоустойчивость обеспечивается путем использования специализированных компонент (ECC, Chip Kill модули памяти, отказоустойчивые блоки питания, и т.п.), а также с помощью технологий кластеризации. Благодаря кластеризации достигается такая схема функционирования, когда при отказе одного из компьютеров задачи перераспределяются между другими узлами кластера, которые функционируют исправно. Причем одной из важнейших задач производителей кластерного программного обеспечения является обеспечение минимального времени восстановления системы в случае сбоя, так как отказоустойчивость системы нужна именно для минимизации так называемого внепланового простоя. Много кто забывает, что удобство в обслуживании, которое служит уменьшению плановых простоев (например, замены вышедшего из строя оборудования) является одним из важнейших параметров систем высокой готовности. И если система не разрешает заменять компоненты без выключения всего комплекса, то ее коэффициент готовности уменьшается.

Поэтому для организации такой системы не подойдет обыкновенный сервер со стандартной архитектурой, вполне пригодный там, где не стоит жестких требований к производительности и времени простоя. Высокопроизводительные системы для глобальных корпоративных вычислений должны отличаться такими характеристиками, как повышенная производительность, масштабируемость, минимально допустимое время простоя.

Математика , физика курсовая, информационные системы. Машиностроительное черчение