Информатика
Математика
Чертежи
Физика
Инженерка
Интегралы
Термех
Решение задач

Черчение

Матанализ
Сопромат
ТОЭ
Энергетика
Курсовая
Искусство
Электроника

Вычислительная математика и вычислительные системы

По определению DEC, кластер - это группа вычислительных машин, которые связаны между собою и функционируют как один узел обработки информации. Кластер функционирует как единая система, то есть для пользователя или прикладной задачи вся совокупность вычислительной техники выглядит как один компьютер. Именно это и является самым важным при построении кластерной системы.

Моделирование и анализ параллельных вычислений

Показатели эффективности параллельного алгоритма

Ускорение, получаемое при использовании параллельного алгоритма для p процессоров, по сравнению с последовательным вариантом выполнения вычислений определяется

,

т.е. как отношение времени решения задач на скалярной ЭВМ к времени выполнения параллельного алгоритма (величина n используется для параметризации вычислительной сложности решаемой задачи и может пониматься, например, как количество входных данных задачи).

Эффективность использования параллельным алгоритмом процессоров при решении задачи определяется соотношением:

(величина эффективности определяет среднюю долю времени выполнения алгоритма, в течение которой процессоры реально используются для решения задачи).

Как следует из приведенных соотношений, в наилучшем случае Sp(n) = p и Ep(n) = 1. В 4 разделе данные показатели будут определены для ряда рассмотренных параллельных алгоритмов для решения типовых задач вычислительной математики.

Многопроцессорные системы за годы развития вычислительной техники претерпели ряд этапов своего развития. Исторически первой стала осваиваться технология SIMD. Однако в настоящее время наметился устойчивый интерес к архитектурам MIMD. Этот интерес главным образом определяется двумя факторами: 1. Архитектура MIMD дает большую гибкость: при наличии адекватной поддержки со стороны аппаратных средств и программного обеспечения MIMD может работать как однопользовательская система, обеспечивая высокопроизводительную обработку данных для одной прикладной задачи, как многопрограммная машина, выполняющая множество задач параллельно, и как некоторая комбинация этих возможностей. Архитектура MIMD может использовать все преимущества современной микропроцессорной технологии на основе строгого учета соотношения стоимость/производительность. В действительности практически все современные многопроцессорные системы строятся на тех же микропроцессорах, которые можно найти в персональных компьютерах, рабочих станциях и небольших однопроцессорных серверах. Эти машины параллельно выполняют несколько потоков инструкций над различными потоками данных. В отличие от многопроцессорных SISD-машин, упомянутых выше, команды и данные связаны, потому что они представляют различные части одной и той же выполняемой задачи. Например, MIMD-системы могут параллельно выполнять множество подзадач, с целью сокращения времени выполнения основной задачи. Наличие большого разнообразия попадающих в данный класс систем, делает классификацию Флинна не полностью адекватной. Действительно и четырех-процессорный SX-5 компании NEC и тысяче-процессорный Cray T3E оба попадают в этот класс. Это заставляет искать другой подход к классификации, иначе описывающий классы компьютерных систем.

Поэтому для организации такой системы не подойдет обыкновенный сервер со стандартной архитектурой, вполне пригодный там, где не стоит жестких требований к производительности и времени простоя. Высокопроизводительные системы для глобальных корпоративных вычислений должны отличаться такими характеристиками, как повышенная производительность, масштабируемость, минимально допустимое время простоя.

Электротехника

На главную