Математический анализ лекции и задачи

Алгоритмы маршрутизации
Мультикомпьютеры
Выбор топологии вычислительной системы
Сбои в персональных компьютерах
Запись на диски и в файлы
Процессы и ресурсы
Балансировка вычислительной
нагрузки процессоров
Математическая статистика
Предел функции Интегрирование
Решение интегралов
Вычисление двойных и тройных интегралов
Курсовая на вычисление интеграла
Формула Тейлора для ФНП
Производная сложной ФНП
Интегрирование функций нескольких переменных
Геометрические свойства интеграла ФНП
Типовые задачи
Вычислить интеграл
Вычислить момент инерции
Вычислить повторный интеграл
Решения задачи Коши
Метод Эйлера
Оформление сборочного чертежа
Изображения
Способы преобразования чертежа
 Нанесение размеров
Аксонометрические проекции
Резьбы, резьбовые изделия
Разъемные соединения
Неразъемные соединения
Шероховатость поверхности
Сборочный чертеж
Деталирование чертежей
Решение задач по физике примеры
Электротехника
Оптика
Билеты к экзамену по физике
Теория электромагнитного поля
Элементы электрических цепей
Промышленная электроника
Цифровая электроника
Теоретические основы электротехники
Сопротивление материалов
Метод сечений
Перемещения и деформации
Общие принципы расчета конструкции
Моменты инерции сечения
Кручение бруса
Определение опорных реакций
Момент сопротивления
Метод начальных параметров
Косой изгиб
Внецентренное растяжение и сжатие
Теории прочности
Метод сил
Расчет на усталостную прочность
Задача Эйлера
Формула Ясинского
Определение прогиба и напряжений
Запас усталостной прочности
Основы теории упругости
Основы теории пластичности
Рождение абстрактного искусства
Художники эпохи Просвещения
Теоретическая механика

Математический анализ – совокупность разделов математики, посвящённых исследованию функций методами дифференциального и интегрального исчислений. Основателями этой дисциплины являются английский учёный И. Ньютон (1643–1727) и немецкий учёный Г. Лейбниц (1646–1716). Дальнейшее развитие математический анализ получил в работах таких известных математиков, как Я. Бернулли (1654–1705), И. Бернулли (1667–1748), Б. Тейлор (1685–1731), Л. Эйлер (1707–1783), Ж. Лагранж (1736–1813), Ж. Фурье (1768–1830), О. Коши (1789–1857), К. Якоби (1804–1851), К. Вейерштрасс (1815–1897), Б. Риман (1826–1866), М. Жордан (1838–1922), Г. Кантор (1845–1918) и многих других. Классическая часть современного математического анализа окончательно сформировалась к началу XX столетия. Эта часть анализа преподаётся на первых двух курсах университетов и входит (целиком или в значительной части) в программы всех технических вузов у нас в стране и за рубежом.

«Математический анализ» наряду с «Линейной алгеброй и аналитической геометрией» является базовым для изучения на втором и последующих курсах таких дисциплин, как «Дифференциальные уравнения», «Численные методы», «Уравнения математической физики», «Дополнительные главы анализа», «Функциональный анализ» и ряда других.

Множества. Операции над множествами В математике первичными понятиями являются понятия множества и элемента множества. Множества обозначают большими латинскими буквами A, B, ..., а их элементы – малыми a, b, ... Если элемент a принадлежит множеству A, то пишут aÎA. В противном случае пишут aÏA. Для любого множества A (непустого или пустого) полагается AÈÆ=A.

Типовые расчеты (курсовые задания) по математике Производные и дифференциалы функций нескольких переменных Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина Dxz = f( x + Dx, y) – f(x, y) называется частным приращением функции по х.

Логические символы В математических рассуждениях часто встречаются выражения «существует элемент», обладающий некоторыми свойствами, и «любой элемент» среди элементов, имеющих некоторое свойство. Вместо слова «существует» или равносильного ему слова «найдётся» иногда пишут символ $, т. е. перевернутую латинскую букву E (от англ. Existence существование), а вместо слов «любой», «каждый», «всякий» – символ ", т. е. перевернутое латинское A (от англ. аny любой). Символ $ называется символом существования, а символ " – символом всеобщности. Свойство непрерывности действительных чисел связано с самым простейшим использованием математики на практике – с измерением величин. При измерении какой-либо физической или какой-нибудь другой природы величины часто получают с большей или меньшей точностью её приближённые значения

Числовые множестваю Мощность множеств Расширенная числовая прямая Известно что между множеством действительных чисел и множеством точек числовой прямой существует взаимнооднозначное соответствие. Часто бывает удобно дополнить эти множества элементами, обозначаемыми через +¥ и –¥ и называемыми соответственно плюс и минус бесконечностями Промежутки действительных чисел

Конечные и бесконечные множества. Эквивалентные множества. Мощность Рассматривая различные множества, мы замечаем, что иногда можно, если не фактически, то хотя бы примерно, указать число элементов в данном множестве. Таковы, например, множество всех вершин некоторого многогранника, множество всех простых чисел, не превосходящих данного числа, и т. д. Примеры. Множества точек на любых двух отрезках [a, b] и [c, d] эквивалентны между собой

Теорема Кантора Можно доказать, что из всех бесконечных множеств счётные множества имеют наименьшую мощность, если только существуют бесконечные множества, неэквивалентные счётному. Такие множества называются несчётными, их существование следует из теоремы Кантора.

Верхняя и нижняя грани множества Ограниченные и неограниченные множества Введём ряд нужных в дальнейшем понятий и изучим некоторые свойства числовых множеств. Рассмотрим произвольное множество XÌ¡.

Последовательность. Предел последовательности Пусть X – какое-либо множество и ¥ – множество натуральных чисел. Если каждому элементу множества ¥ поставлен в соответствие единственный вполне определённый элемент множества X, то говорят, что задана последовательность.

Бесконечно малые и бесконечно большие последовательности Последовательность, имеющая своим пределом нуль, называется бесконечно малой. Теорема о единственности предела последовательности Свойство пределов последовательностей

Теорема. Если последовательности xn, yn имеют конечные пределы: , то их произведение также имеет конечный предел, причём .

Неопределённые выражения Выше были оставлены без рассмотрения случаи, когда пределы переменных xn, yn (один или оба) бесконечны или, если речь идет о частном, когда предел знаменателя равен нулю. Из этих случаев мы здесь остановимся лишь на четырёх, представляющих некоторую важную и интересную особенность.

Предел монотонной ограниченной последовательности Переходим к изучению вопроса о том, какими свойствами должна обладать последовательность, чтобы у неё существовал предел. Прежде чем сформулировать окончательный ответ, рассмотрим один простой и важный класс последовательностей, для которых этот вопрос решается легко. Лемма . Пусть даны монотонно возрастающая последовательность xn и монотонно убывающая последовательность yn, причём всегда

Критерий сходимости Больцано–Коши Общий критерий сходимости последовательности принадлежит чешскому математику Больцано и французскому математику Коши. Для его формулировки нам понадобится следующее понятие. Отсюда следует, что любая фундаментальная последовательность, начиная с некоторого номера, становится ограниченной. Число «e»

Определение подпоследовательности Рассмотрим теперь, наряду с последовательностью xn, какую-либо извлечённую из нее частичную последовательность (или подпоследовательность)

Теорема (Больцано–Вейерштрасса). Из любой ограниченной последовательности xn всегда можно извлечь такую подпоследовательность, которая сходилась бы к конечному пределу.

Наибольший и наименьший пределы Итак, для любой последовательности xn, будь она ограничена или нет, существуют частичные пределы. Можно показать, что среди этих частичных пределов обязательно найдутся наибольший и наименьший; они называются наибольшим и наименьшим пределами самой последовательности xn

 

Математика , физика курсовая, информационные системы. Машиностроительное черчение