Производная и дифференциал лекции и примеры

Физика
Решение задач

Черчение

ТОЭ
Электроника

Определение производной функции

Если для некоторого значения x0 существуют пределы , или , или , то говорят, что при x=x0 существует бесконечная производная или, соответственно, бесконечная производная определённого знака, равная +¥ или –¥.

Вычисление производной от функции называется дифференцированием. Примеры. Вычислить производную функции. С

вязь между дифференцируемостью и существованием производной функции Выясним теперь связь между дифференцируемостью функции в точке и существованием производной функции в той же точке.

Связь между дифференцируемостью и непрерывностью функции в точке

Геометрический смысл производной и дифференциала Понятия производной и дифференциала функции в данной точке связаны с понятием касательной к графику функции в этой точке. Чтобы выяснить эту связь, определим, прежде всего, касательную.

Предельное положение секущей M0M при Dx®0, или, что то же, при M®M0, называется касательной к графику функции f в точке M0.

Физический смысл производной и дифференциала

Правила вычисления производных Пример. Вычислить производную функций .

Производная обратной функции Пользуясь формулой, вычислить производную функций .

Производная и дифференциал сложной функции Условие существования производной сложной функции

Инвариантность формы первого дифференциала функции Следствие (инвариантность формы первого дифференциала относительно преобразования независимой переменной)

Гиперболические функции и их производные Функции   называются соответственно гиперболическим косинусом и гиперболическим синусом.

Определение производных высших порядков

Производные высших порядков суммы и произведения функций

Производные высших порядков от сложных функций

Производные высших порядков от обратных функций и от функций, заданных параметрически

Выведем формулы для дифференцирования параметрически заданных функций.

Дифференциалы высших порядков

Теоремы о среднем для дифференцируемых функций

Теорема Ферма В терминах производных оказывается удобным описывать различные свойства функций. Прежде всего, укажем характеристическое свойство точек, в которых функция принимает наибольшее или наименьшее значение

Теорема Ролля

теорема Лагранжа

Геометрический смысл теоремы Лагранжа

Отметим два следствия из теоремы Лагранжа, полезные для дальнейшего. Следствие 1. Если функция f непрерывна на некотором промежутке (конечном или бесконечном) и во всех его внутренних точках имеет производную, равную нулю, то функция постоянна на этом промежутке.

Теорема Коши

О правилах Лопиталя Ранее при изучении пределов мы рассматривали неопределённости различных видов и учились раскрывать их, используя для этого специальные приёмы.

Дифференциальное исчисление позволяет построить более универсальные методы вычисления неопределённых пределов. Некоторые из них, носящие общее название правил существует конечный или бесконечный, равный +¥ или –¥, предел .

Неопределённости вида

Вывод формулы Тейлора

Формула называется формулой Тейлора n-го порядка с остаточным членом в форме Пеано.

Следствие. Пусть функция  определена на интервале , и пусть в точке x0 она имеет производные до порядка n+1 включительно.

Многочлен Тейлора как многочлен наилучшего приближения функции в окрестности данной точки

Разложение основных элементарных функций по формуле Маклорена

Часто бывает удобно для разложения функций f и g по формуле Тейлора использовать готовый набор разложений элементарных функций. Для этого следует в случае x0¹0 предварительно выполнить замену переменного t=x–x0; тогда x®x0 будет соответствовать t®0. Случай x®¥ заменой переменного x=1/t сводится к случаю t®0.

Исследование поведения функции Признак монотонности функции Для того чтобы непрерывная на некотором промежутке функция, дифференцируемая во всех его внутренних точках, возрастала (убывала) на этом промежутке, необходимо и достаточно, чтобы производная функции была во всех внутренних точках промежутка неотрицательна (неположительна).

Отыскание наибольших и наименьших значений функции Выпуклость и точки перегиба

Всякий интервал, на котором функция (строго) выпукла вверх, соответственно вниз, называется интервалом (строгой) выпуклости вверх, соответственно вниз, этой функции.

Теорема (необходимое условие, выполняющееся в точке перегиба). Если в точке перегиба функции существует вторая производная, то она равна нулю.

Общая схема построения графиков функции Асимптоты

Построение графиков функций Изучение заданной функции и построение её графика целесообразно проводить в следующем порядке

Электротехника

На главную