Неопределенный интеграл лекции и задачи

Физика
Решение задач

Черчение

ТОЭ
Электроника

Определение и свойства неопределенного интеграла Первообразная и неопределённый интеграл

В этом подразделе рассматривается задача отыскания функции, для которой заданная функция является производной.

Основные свойства интеграла Все рассматриваемые в этом пункте функции определены на некотором фиксированном промежутке D. Если функция F дифференцируема на некотором промежутке, то на нём   или, что то же самое, .

Табличные интегралы Операция нахождения неопределённого интеграла от данной функции, называемая интегрированием, является действием, обратным дифференцированию, т. е. операции нахождения по данной функции её производной. Поэтому всякая формула, выражающая производную той или иной функции, т. е. формула вида , может быть обращена (записана в виде интегральной формулы) .

Нахождение неопределенных интегралов Интегрирование подстановкой

Интегрирование по частям Если функции  и  дифференцируемы на некотором промежутке и на этом промежутке существует интеграл , то на нём существует и интеграл , причём .

Интегрирование рациональных функций Переходим к изучению вопроса об интегрировании рациональных функций вида , где  – некоторые многочлены.

Интегрирование трансцендентных функций

Математика , физика курсовая, информационные системы. Машиностроительное черчение