Информатика
Математика
Чертежи
Физика
Инженерка
Интегралы
Термех
Решение задач

Черчение

Матанализ
Сопромат
ТОЭ
Энергетика
Курсовая
Искусство
Электроника

Математический анализ лекции и примеры решения задач контрольной работы

Классификация бесконечно малых функций

Во многих случаях представляет интерес сравнение бесконечно малых между собой по характеру их приближения к нулю. Рассмотрим две бесконечно малые a(x) и b(x) при x®x0 и предположим, что b(x) не обращается в ноль в некоторой проколотой окрестности точки x0. Будем сравнивать эти бесконечно малые, изучая поведение их отношения при x®x0.

Дадим следующие определения.

Если , то говорят, что a(x) и b(x) бесконечно малые одного порядка при x®x0.

Если , то говорят, что a(x) бесконечно малая более высокого порядка по сравнению с b(x) при x®x0, и пишут , x®x0.

Если a(x) и bk(x) – бесконечно малые одного порядка (k>0), то говорят, что b(x) величина k-го порядка относительно бесконечно малой a(x) при x®x0 и пишут , x®x0.

Если , то говорят, что a(x) и b(x) эквивалентные бесконечно малые при x®x0 и пишут , x®x0.

Замечание. Та же терминология применяется и при сравнении функций, не являющихся бесконечно малыми при x®x0. В этом случае добавляется ещё одно определение.

Если существует число C > 0 такое, что в некоторой проколотой окрестности точки x0 справедливо неравенство , то говорят, что функция a(x) ограничена относительно функции b(x) при x®x0, и пишут , x®x0.

Примеры. 1. Привести примеры на каждое из определений.

2. Доказать, что  при x®0.

3. Вычислить: .

4. Доказать, что  при x®0.


Электротехника

На главную