Метод половинного деления Метод прямоугольников Метод наименьших квадратов Методы решения систем линейных уравнений Нахождение ранга матрицы Линейное программирование Математическая статистика

Математика решение уравнений

Решение задач по аналитической геометрии: расчет треугольника, пирамиды, скалярное и векторное произведение, уравнение прямых, плоскостей, линий и поверхностей второго порядка.

Метод прямоугольников.

Шаблон интегрирования содержит один узел, интерполяционный многочлен имеет нулевую степень. Узел выбирают в середине отрезка (возможен выбор узла и в каком-нибудь конце отрезка, но точность при этом будет хуже). Узел Х0 на отрезке [di,di+1] задается формулой Х0=(di+di+1)/2=a+(i+0.5)*h, a интеграл заменяется на выражение h*f(X0).

Упражнение 3.1.Выяснить геометрический смысл такой замены.

Квадратурная формула метода прямоугольников имеет вид:

Метод трапеций.

Шаблон содержит два узла, которые расположены по краям отрезка [di,di+1], интерполяционный многочлен имеет первую степень. На отрезке [di,di+1] узлы задаются формулами: Х0=di=a+ih; X1=a+(i+1)*h, где i=0,1,2,...,k-1.

Формула шаблона метода трапеций принимает вид:

Упражнение 3.2.Выяснить геометрический смысл полученной формулы.

Упражнение 3.3.Пользуясь правилом получения весов, вывести самостоятельно формулу шаблона метода трапеций.

Складывая, получаем квадратурную формулу метода трапеций:

Существует несколько методов решения нелинейных уравнений. В данной работе рассмотрены такие, как метод деления отрезка пополам, метод простой итерации, метод Ньютона (касательных), метод хорд, комбинированный метод и метод Бройдена. Метод секущих Бройдена является одним из оптимальных методов решения нелинейных уравнений. По-этому, возникла задача, целью которой является написание программы, визуализирующую процесс нахождения корней нелинейных уравнений методом Бройдена.

Наиболее простым методом, позволяющим найти корень нелинейного уравнения, является метод половинного деления. Сходимости мала, но к достоинствам метода относятся простота и безусловная сходимость итерационного процесса. Метод Ньютона (Касательных) имеет квадратичную скорость сходимости. Он является одним из оптимальных методов, так же как и комбинированный метод приближения корня уравнения по методу хорд и по методу касательных подходят к значению этого корня с противоположных сторон. Поэтому для быстроты нахождения корня удобно применять оба метода одновременно. Т.к. один метод даёт значение корня с недостатком, а другой – с избытком, то достаточно легко получить заданную степень точности корня.

Решение нелинейных уравнений комбинированным методом возможно только при выполнении следующих условий:

1) ,

2)  и  сохраняют знак на отрезке ,

Приближения корней находятся:

а) по методу касательных: ,

б) по методу хорд: .

При схождении к корню с разных сторон скорость схождения получается максимальной.

В процессе написания программы были реализованы два способа графического представления данного метода (пошаговый и стандартный).

Программа написана в интегрированной среде программирования Delphi 8.0 на языке Pascal. По средствам парсера формул функция преобразовывается в код, затем уравнение решается методом хорд и касательных. После достижения заданной точности выполняется построение графика пошагово и полностью. Парсер был реализован созданием специального класса.

При исследовании сходимости методов решения нелинейных уравнений метод Хорд и касательных оказался наиболее оптимальным из выбранных методов. На втором месте оказался метод Ньютона.

Метод Симпсона. Шаблон содержит 3 узла, которые расположены по краям и в середине отрезка [di,di+1]; интерполяционный многочлен имеет вторую степень.

Метод двойного счета. Задача 3.1. Доказать, что методы прямоугольников (с узлом в середине отрезка) и трапеций дают точный результат на всех линейных функциях, но не на всех квадратичных функциях, а метод Симпсона дает точный результат на всех многочленах третьей степени, но не четвертой.

Постановка задачи: С помощью ЭВМ вычислить интеграл функции на указанном отрезке методами прямоугольников, трапеций(n=50) и Симпсона(n=20 и n=40). Произвести оценку точности ответа методом двойного счета.

Метод Пикара.Напомним известные теоремы Пикара и Пеано о существовании и единственности решения данной задачи (задачи Коши).

Кроме метода Пикара, к аналитическим методам относится и метод разложения неизвестной функции Y(х) в ряд, на котором мы сейчас остановимся.

Напишем формальное разложение Y(Х) в ряд Тейлора в точке а:.

Среди графических рассмотрим метод Эйлера. Суть его состоит в последовательном построении ломаной, начинающейся в точке (Хо,Yо), заданной начальным условием и дающей приблизительный вид графика искомой функции Y(х).

Поясним происхождение формул в методах Рунге-Кутта. Для получения закона вычисления значения Y(x) в каждой следующей точке поступают приблизительно так: выписывают разложение неизвестной функции в ряд Тейлора в точке Xi, как мы проделывали это выше, затем берут несколько первых членов этого разложения, и преобразуют полученную формулу Тейлора.

Постановка задачи: По заданному обыкновенному дифференциальному уравнению на фиксированном отрезке и значению искомой функции в левом конце определить значение в правом конце с требуемой точностью.

Решение задач по теории вероятностей: классическое определение вероятности, формула полной вероятности, формула Бернулли, локальная и интегральная теорема Лапласа, непрерывные и дискретные случайные величины, математическое ожидание, дисперсия, среднее квадратическое отклонение, равномерное, нормальное распределение, цепи Маркова.
Математика решение уравнений