Метод половинного деления Метод прямоугольников Метод наименьших квадратов Методы решения систем линейных уравнений Нахождение ранга матрицы Линейное программирование Математическая статистика

Математика решение уравнений

В методических указаниях рассмотрены так называемые мето-ды Рунге - Кутта: метод Эйлера, метод Адамса, уже упомянутый метод Тейлора и др. Дан сравнительный анализ их точности, ко-торая продемонстрирована на решении конкретных задач лабора-торного практикума.

Построение многочлена Лагранжа.

Зная вспомогательные многочлены, легко построить и искомый многочлен в виде их линейной комбинации:

В самом деле, степень Рn(х) не выше n, a подставляя в эту формулу значения Х=Хj, получаем: Рn (Xj)=Уj при j=0,1,2,...,n.

Поскольку ранее мы установили, что многочлен степени n, удовлетворяющий условиям интерполяции в узлах единственен, то построенный многочлен Рn(X) и является искомым. Окончательно, он запишется в виде:

Упражнения: Пользуясь формулой (2.1) выписать интерполяционный многочлен в форме Ньютона для функции, заданной таблицей:

 (2.2)

X

1

2

3

 (2.3)

X

-1

0

1

2

y

2

3

6

y

2

2

2

8

 

Оценка точности формулы (2.1) проводится при предположении, что исходная функция f(x) является (n+1) раз дифференцируемой и мы знаем максимум модуля ее (n+1)-ой производной Mn+1. Как уже отмечалось выше, без дополнительных ограничений на гладкость функции никаких оценок произвести нельзя.

Оценка погрешности.

Итак, оценим погрешность формулы (2.1) в какой-нибудь точке ХÎ[a,b], т.е. будем оценивать R(X),где R(x)=f(x)-Pn(x)

Обозначим многочлен степени (n+1) с корнями в узлах интерполирования через w(x):

и введем вспомогательную функцию: F(x)=f(x)-Pn(x)-b w(x) (2.2)

При этом коэффициент b в формуле (2.2) мы выберем так, чтобы выполнялось условие

F(X)=0, т.е. f(X)-Pn(X)=b w(X) или R(X)=b w(X) (2.3).

Мы можем без ограничений общности считать, что точка Х не совпадает ни с одним из узлов Хi, поскольку в них погрешность равна 0. В этом случае вспомогательная функция обращается в нуль не менее (n+2) раз на отрезке [a,b]: в точке X и в узлах интерполяции, т.к. w(Xi)=0 и f(Xi)= Pn(Xi).

Используем теорему Ролля, которая утверждает, что между любыми двумя нулями дифференцируемой функции найдется нуль производной, видим, что первая производная F'(x) должна обращаться в нуль на отрезке [a,b] не менее (n+1) раз.

Аналогично, вторая производная F''(x) обращается в нуль не менее n-раз на отрезке [a,b] и т.д.

Рассуждая подобным образом, мы установим, что функция F(n+1)(x) обязательно обращается в нуль хотя бы один раз на отрезке [a, b].

Пусть F(n+1)(d)=0. Дифференцируя формулу (2.2) (n+1) раз, получаем:

F(n+1)(x)=f(n+1)(x)-0-b(n+1)!

откуда легко видеть, что:

f(n+1)(d)=b(n+1)!, или b=f(n+1) (d)/(n+1)!

Подставляя полученное выражение в (2.3), видим:

R(x)=f(n+1)(d)w(x)/(n+1)!,

откуда уже легко произвести нужную оценку

 (2.4)

справедливую для всех точек отрезка [a,b].

Интерполирование функций При решении большинства вычислительных задач приходиться иметь дело с функциями, заданными таблично, а не аналитически.

Интерполяция многочленом. Единственность интерполяционного многочлена n-й степени.

Упражнения: Пользуясь формулой (2.4) произвести оценку точности интерполяции при Х=1.5 в условиях:2.4. Упражнения (2.2) и предположения M3 < 10 на [1,3].

1.Произвести вспомогательные выкладки для оценки погрешности в своем варианте. 2.Подготовить тексты программ линейной интерполяции и интерполяции по Лагранжу с оценкой погрешности.

Численное интегрирование функций Хорошо известны многочисленные примеры задач из различных отраслей механики, геометрии, физики, и т.д., которые приводят к необходимости вычисления определенных интегралов функции одной переменной на некотором отрезке.

Решение задач по математическому анализу: пределы, производные, интегралы, ряды, приложение дифференциального и интегрального исчисление, вычисление объемов, площадей, исследование функций.
Математика решение уравнений