Сопротивление материалов

Алгоритмы маршрутизации
Мультикомпьютеры
Выбор топологии вычислительной системы
Сбои в персональных компьютерах
Запись на диски и в файлы
Процессы и ресурсы
Балансировка вычислительной
нагрузки процессоров
Математическая статистика
Предел функции Интегрирование
Решение интегралов
Вычисление двойных и тройных интегралов
Курсовая на вычисление интеграла
Формула Тейлора для ФНП
Производная сложной ФНП
Интегрирование функций нескольких переменных
Геометрические свойства интеграла ФНП
Типовые задачи
Вычислить интеграл
Вычислить момент инерции
Вычислить повторный интеграл
Решения задачи Коши
Метод Эйлера
Оформление сборочного чертежа
Изображения
Способы преобразования чертежа
 Нанесение размеров
Аксонометрические проекции
Резьбы, резьбовые изделия
Разъемные соединения
Неразъемные соединения
Шероховатость поверхности
Сборочный чертеж
Деталирование чертежей
Решение задач по физике примеры
Электротехника
Оптика
Билеты к экзамену по физике
Теория электромагнитного поля
Элементы электрических цепей
Промышленная электроника
Цифровая электроника
Теоретические основы электротехники
Сопротивление материалов
Метод сечений
Перемещения и деформации
Общие принципы расчета конструкции
Моменты инерции сечения
Кручение бруса
Определение опорных реакций
Момент сопротивления
Метод начальных параметров
Косой изгиб
Внецентренное растяжение и сжатие
Теории прочности
Метод сил
Расчет на усталостную прочность
Задача Эйлера
Формула Ясинского
Определение прогиба и напряжений
Запас усталостной прочности
Основы теории упругости
Основы теории пластичности
Рождение абстрактного искусства
Художники эпохи Просвещения
Теоретическая механика

Сопротивление материалов наука о прочности, жесткости и устойчивости элементов инженерных конструкций.

Внешние и внутренние силы. Метод сечений.

Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали.

В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня.

Перемещения и деформации Под действием внешних сил твердые тела изменяют свою геометрическую форму, а точки тела неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т.  деформированного состояния, называется вектором полного перемещения т.А (рис.1.5,а).

Закон Гука и принцип независимости действия сил Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам.

Внутренние силы и напряжения Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только нормальные силы, а прочие силовые факторы равны нулю.

Удлинение стержня и закон Гука Рассмотрим однородный стержень с одним концом, жестко заделанным, и другим-свободным, к которому приложена центральная продольная сила Р (рис.2.2).

Расчет передач на сопротивление усталости при изгибе Расчет выполняется при предположениях, что зуб нагружен силой FH, в зацеплении находится одна пара зубьев, а также силы трения отсутствуют.

 Для стального бруса квадратного сечения сжатого силой Р с учетом собственного веса при исходных данных приведенных ниже, требуется (рис.2.3,а): 1.Определить количество расчетных участков;

Аналогично предыдущему проводим сечение 2-2 на расстоянии z2 (рис.2.3,в). Для верхней части составляем уравнение равновесия åz=0.

Потенциальная энергия деформации Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях.

Статически определимые и статически неопределимые системы Если при рассмотрении заданной системы, находящейся в равновесном состоянии от действия заданных внешних нагрузок, все реакции в связях закрепления, а также внутренние усилия в ее элементах, можно определить только по методу сечений, без использования дополнительных условий, то такая система называется статически определимой.

Теперь перейдем к анализу деформаций в растянутом стержне. Наблюдения показывают, что его удлинение в продольном направлении сопровождается пропорциональным уменьшением поперечных размеров стержня (рис.2.7).

Основные механические характеристики материалов Для количественной оценки основных свойств материалов, как правило, экспериментально определяют диаграмму растяжения в координатах s и e (рис.2.9),

Общие принципы расчета конструкции В результате расчета нужно получить ответ на вопрос, удовлетворяет или нет конструкция тем требованиям прочности и жесткости, которые к ней предъявляются.

Пример расчета (задача № 2) Абсолютно жесткий брус АЕ (рис.2.12,а), имеющий одну шарнирно неподвижную опору С и прикрепленный в точках В, Д и Е тремя тягами из упруго-пластического материала, нагружен переменной по величине силой Р.

Для составления дополнительных уравнений рассмотрим деформированное состояние системы (рис.2.12,в), имея в виду, что брус абсолютно жесткий и поэтому после деформации тяг останется прямолинейным.

Определить в процессе увеличения нагрузки Р такую ее величину, при которой напряжение в одной из тяг достигнет предела текучести.

Найти несущую способность из расчетов по методам допускаемых напряжений и разрушающих нагрузок при одном и том же коэффициенте запаса прочности.

При выполнении практических расчетов важно знать, как меняются статические моменты сечения при параллельном переносе координатных осей (рис3.2).

Моменты инерции сечения.

Определим осевые моменты инерции прямоугольника относительно осей x и y, проходящих через его центр тяжести (рис.3.4).

Главные оси и главные моменты инерции Рассмотрим, как изменяются моменты инерции плоского сечения при повороте осей координат из положения x и y к положению u и v. Из рис.3.5,б легко установить, что u=ysina+xcosa;v=ycosa-xsina. (3.10).

 Для сечения, составленного из швеллера №20а, равнобокого уголка (80;80;8)10-9м3 и полосы (180;10)10-6м2 (рис.3.6) требуется:1.Найти общую площадь сечения; 2.Определить центр тяжести составного сечения;

Определить центр тяжести составного сечения. В качестве вспомогательных осей для определения положения центра тяжести примем горизонтальную и вертикальную оси xшв и yшв, проходящие через центр тяжести швеллера.

Найти положение главных центральных осей инерции. Угол наклона главных осей инерции, проходящих через центр тяжести составного сечения, к центральным осям инерции xC и yC определим по формуле: .

Кручение бруса с круглым поперечным сечением Здесь под кручением понимается такойвид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент.

Парные им напряжения возникают в продольных плоскостях в осевых сечениях. Величину крутящего момента Mz можно определить через t с помощью следующих рассуждений.

 Стальной валик переменного сечения, испытывающего кручение, закручивается крутящими моментами, действующими в двух крайних и двух пролетных сечениях.

Сначала определим моменты сопротивления сечения валика для каждого участка. I участок (трубчатое сечение) согласно (4.13):где ;

Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки. Касательные напряжения в точках поперечного сечения валика определяются по формулам:

Построить эпюру углов закручивания. Угол закручивания на i-ом участке вала в соответствии с (4.10) определяется:,

где-угол закручивания на правом конце (i-1)-го участка (для первого участка -начальный угол закручивания вала); li - координата начала i-го участка.

Кручение тонкостенного бруса В машиностроении, авиастроении и вообще в технике широко применяются тонкостенные стержни с замкнутыми (рис.4.7,а) и открытыми профилями (рис.4.7,б) поперечных сечений.

Далее рассмотрим брус, имеющий поперечное сечение в форме замкнутого тонкостенного профиля (рис.4.9).

Пример расчета (задача 5) Пусть задан тонкостенный стержень (рис.4.10,а) при действии самоуравновешивающих крутящих моментов на двух противоположных концах, требуется: 1.Определить выражения максимальных напряжений и углов закручивания в случаях, когда стержень имеет открытый (рис.4.10,б) и замкнутый (рис.4.10,в) профиль;

Изгиб Внутренние усилия в поперечных сечениях бруса.

Для определения внутренних силовых факторов-изгибающего момента М(z) и поперечной силы Q(z) как функций от продольной координаты z, воспользуемся методом сечений.

Основные дифференциальные соотношения теории изгиба Пусть брус нагружен произвольным образом распределенной нагрузкой q=f(z)

Напряжения при чистом изгибе Рассмотрим наиболее простой случай изгиба, называемый чистым изгибом.

Выразим момент внутренних сил относительно нейтральной оси Mx через s. Очевидно, что . (5.8).

Для статически определимых систем: схемы I (консольная балка, рис.5.8,а), схемы II (двухопорная балка с консолями, рис.5.13) и схемы III (плоской рамы в виде ломаного бруса, рис.5.17) при последовательном их рассмотрении требуется: 1.Построить эпюры Mx и Qy для всех схем и эпюру Nz для схемы III;

Проведя сечение I-I, рассмотрим равновесие правой отсеченной части балки длиной z1, приложив к ней все действующие справа от сечения заданные нагрузки и внутренние силовые факторы Qy и Mx, возникающие в сечении, которые заменяют действие отброшенной части балки (рис.5.9).

Так как, поперечная сила в пределах участка меняет знак, т.е. имеет промежуточное нулевое значение (рис.5.8,в), то в этом сечении возникает экстремальное значение изгибающего момента.

При построении приблизительного вида изогнутой оси балки по эпюре Mx необходимо знать, что знак изгибающего момента связан с характером деформации балки от действия заданной внешней нагрузки.

Математика , физика курсовая, информационные системы. Машиностроительное черчение