Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Определение опорных реакций Момент сопротивления Метод начальных параметров Косой изгиб Внецентренное растяжение и сжатие Теории прочности Суть метод Мора уравнение совместности деформаций

Сопромат Теории прочности Основы теории упругости и пластичности

Прочностной надежностью называется отсутствие отказов, связанных с разрушением или недопустимыми деформациями элементов конструкции.

Косой изгиб

 Под косым изгибом понимается такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис.5.27,а). Косой изгиб удобнее всего рассмотреть как одновременный изгиб бруса относительно главных осей x и y поперечного сечения бруса. Для этого общий вектор изгибающего момента М, действующего в поперечном сечении бруса, раскладывается на составляющие момента относительно этих осей (рис.5.27,б):

Mx=Msina;My=Mcosa. (5.25)

 Введем следующее правило знаков для моментов Mx и My -
момент считается положительным, если в первой четверти координатной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.

Рис.5.27

 На основании принципа независимости действия сил нормальное напряжение в произвольной точке, принадлежащей к поперечному сечению бруса и имеющей координаты x,y, определяется суммой напряжений, обусловленных моментами Mx и My, т.е.

. (5.26)

 Подставляя выражения Mx и My из (5.25) в (5.26), получим:

.

 Из курса аналитической геометрии известно, что последнее выражение представляет собой уравнение плоскости. Следовательно, если в каждой точке сечения отложить по нормали вектор напряжения s, то концы векторов образуют геометрическое место точек, принадлежащих одной плоскости, как и при поперечном изгибе.

 Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, найдем, полагая в (5.26) s=0:

.

 Откуда определяется:

. (5.27)

 Поскольку свободный член в (5.27) равен нулю нейтральная линия всегда проходит через начало координат. Как видно из выражения (5.26), эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении возникают в точках наиболее удаленных от нейтральной линии. В том случае, когда сечение имеет простую форму (прямоугольник, круг), положение наиболее опасных точек легко определяется визуально. Для сечений, имеющих сложную форму, необходимо применить графический подход.

 Далее покажем, что при косом изгибе нейтральная линия не перпендикулярна к плоскости действия изгибающего момента, как это всегда выполнялось при поперечном изгибе. Действительно угловой коэффициент K1 следа момента (рис.5.27,б) равен:

K1=tga. (5.28)

 Угловой же коэффициент нейтральной линии, как это следует из (5.27), определяется выражением:

tg j=K2. (5.29)

 Так как в общем случае Ix¹Iy, то условие перпендикулярности прямых, известное из аналитической геометрии, не соблюдается, поскольку K1¹. Брус, образно выражаясь, предпочитает изгибаться не в плоскости изгибающего момента, а в некоторой другой плоскости, где жесткость на изгиб будет минимальной.

Оценка прочности при ударной нагрузке. Вид формул, полученных для динамического коэффициента, показывает, какие большие качественные различия ведет за собой количественное изменение периода действия силы на тело. Рассмотрим некоторые случаи удара при простейших деформациях. При этом для нахождения коэффициента динамичности применим основные полученные формулы для динамического коэффициента.
Сопромат Метод сил