Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Определение опорных реакций Момент сопротивления Метод начальных параметров Косой изгиб Внецентренное растяжение и сжатие Теории прочности Суть метод Мора уравнение совместности деформаций

Сопромат Теории прочности Основы теории упругости и пластичности

Таким образом, при равномерном распределении напряжений, одинаковом во всех сечениях стержня, динамическое напряжение будет уменьшаться с увеличением площади поперечного сечения стержня и с увеличением его податливости (т. е. с увеличением длины и уменьшением модуля упругости Е); именно поэтому смягчают удар всякие рессоры и пружины, расположенные между ударяющимися деталями.

Определение перемещений методом Мора

 Суть метод Мора в следующем. Если необходимо определить перемещение в заданной точке по заданному направлению, то наряду с заданной системой внешних сил в этой точке прикладывается внешнее усилие Ф=1 в интересующим нас направлении.

 Далее составляется выражение потенциальной энергии системы, состоящей из n участков с учетом одновременного действия заданной системы внешних сил и силы Ф:

 (6.1)

,

где Кх, Ку-безразмерные величины, зависящие от геометрической формы сечения и учитывают неравномерность распределения касательных напряжений в сечении при поперечном изгибе. Так, например, для прямоугольника Кх=Ку=1,2, а для двутавра при изгибе в плоскости его стенки K=F/FCT, где F-площадь всего сечения двутавра, FCT -площадь стенки; Nz, Qx, Qy, Mz, Mx, My-внутренние силовые факторы, возникающие в поперечных сечениях заданной стержневой системы; -внутренние силовые факторы, возникающие в поперечных сечениях заданной системы, от действия усилия Ф=1.

 Дифференцируя выражение (6.1) по Ф, и полагая после этого Ф=0, находим искомое перемещение в искомой точке в нужном направлении.

. (6.2)

 Полученные интегралы называются интегралами Мора и широко применяются при вычислении перемещений стержневых систем.

 Для систем, элементы которых работают на растяжение или сжатие (например, шарнирно-стержневые системы-фермы), в формуле Мора (6.2) отличен от нуля будет только слагаемое, содержащее продольные силы. При расчете балок или рамных систем, работающих в основном на изгиб, влияние поперечной и продольной силы на перемещение несущественно и в большинстве случаев их влияние не учитывается. В случае пространственной работы стержня или стержневой системы, элементы которой работают, в основном, на изгиб и кручение, в формуле Мора обычно ограничиваются рассмотрением слагаемых, содержащих изгибающие и крутящие моменты.

 Подробно рассмотрим случай, когда брус работает только на изгиб (Mx¹0, Nz=Mz=My=Qx=Qy=0). В этой ситуации выражение (6.2) принимает вид:

. (6.3)

 Согласно (6.3) для определения перемещения произвольной точки в произвольном направлении, последовательно необходимо выполнять следующее:

 1.Построить эпюру моментов Мx от заданной системы внешних сил;

 2.Исключая внешние силы и в точке, где необходимо определить перемещение по заданному направлению, прикладывается единичное усилие (сила-если требуется определить линейное перемещение; момент-если требуется определить угловое перемещение), и от действия единичного усилия строится эпюра моментов ;

 3.По формуле Мора (6.3) вычисляется искомое перемещение.

Рис.6.6

Сопротивление балок ударным нагрузкам зависит и от момента сопротивления и от жесткости балки. Чем больше податливость, деформируемость балки, тем большую живую силу удара она может принять при одних и тех же допускаемых напряжениях. Наибольший прогиб балка дает в том случае, когда во всех ее сечениях наибольшие напряжения будут одинаковыми, т. е. если это будет балка разного сопротивления
Сопромат Метод сил