Элементы электрических цепей Промышленная электроника Теоретические основы электротехники

Алгоритмы маршрутизации
Мультикомпьютеры
Выбор топологии вычислительной системы
Сбои в персональных компьютерах
Запись на диски и в файлы
Процессы и ресурсы
Балансировка вычислительной
нагрузки процессоров
Математическая статистика
Предел функции Интегрирование
Решение интегралов
Вычисление двойных и тройных интегралов
Курсовая на вычисление интеграла
Формула Тейлора для ФНП
Производная сложной ФНП
Интегрирование функций нескольких переменных
Геометрические свойства интеграла ФНП
Типовые задачи
Вычислить интеграл
Вычислить момент инерции
Вычислить повторный интеграл
Решения задачи Коши
Метод Эйлера
Оформление сборочного чертежа
Изображения
Способы преобразования чертежа
 Нанесение размеров
Аксонометрические проекции
Резьбы, резьбовые изделия
Разъемные соединения
Неразъемные соединения
Шероховатость поверхности
Сборочный чертеж
Деталирование чертежей
Решение задач по физике примеры
Электротехника
Оптика
Билеты к экзамену по физике
Теория электромагнитного поля
Элементы электрических цепей
Промышленная электроника
Цифровая электроника
Теоретические основы электротехники
Сопротивление материалов
Метод сечений
Перемещения и деформации
Общие принципы расчета конструкции
Моменты инерции сечения
Кручение бруса
Определение опорных реакций
Момент сопротивления
Метод начальных параметров
Косой изгиб
Внецентренное растяжение и сжатие
Теории прочности
Метод сил
Расчет на усталостную прочность
Задача Эйлера
Формула Ясинского
Определение прогиба и напряжений
Запас усталостной прочности
Основы теории упругости
Основы теории пластичности
Рождение абстрактного искусства
Художники эпохи Просвещения
Теоретическая механика

Электротехника - область науки и техники, использующей электрическое и магнитное явления для практических целей. История развития этой науки занимает два столетия. Она началась после изобретения первого электрохимического источника электрической энергии в 1799 г. Именно тогда началось изучение свойств электрического тока, были установлены основные законы электрических цепей, электрические и магнитные явления стали использоваться для практических целей, были разработаны первые конструкции электрических машин и приборов. Жизнь современного человека без использования электрической энергии немыслима.

Источники электрической энергии. Одной из основных характеристик источников электрической энергии является ЭДС. Количественно ЭДС характеризуется работой А, которая совершается при перемещении заряда в 1 Кл в пределах источника

Приемники электрической энергии Приемники электрической энергии делятся на пассивные и активные. Пассивными называют приемники в которых не возникает ЭДС. Вольтамперные характеристики пассивных приемников проходят через начало координат. При отсутствия напряжения ток этих элементов равен нулю. Основной характеристикой пассивных элементов является сопротивление. Пассивные элементы, сопротивление которых не зависит от приложенного напряжения называются линейными. Реально таких элементов не существует. Но весьма близки к ним резисторы, реостаты, лампы накаливания и др. Зависимость напряжения от тока в таких элементах определяется законом Ома, т.е. U = IR, где R - сопротивление элемента. Эта зависимость не меняется, если напряжение и ток - переменное.

Синусоидальный ток. Формы его представления

Представление синусоидального тока (напряжения) радиус - вектором. При анализе состояния электрических цепей переменного тока возникает необходимость вычисления суммы или разности колебаний одинаковых частот, но с разными амплитудами и начальными фазами. Решать такую задачу с помощью рассмотренной формы представления (т.е. с помощью тригонометрических функций) достаточно трудно. Комплексное представление синусоидальных токов и напряжений позволяет совместить простоту и наглядность векторного представления с точностью представления действительными функциями времени

Комплексное сопротивление и проводимости элементов электрических цепей

Энергетические характеристики электрических цепей синусоидального тока Проведем сложение векторов

Выражение мощности в комплексной форме Широкое применение комплексного представления тока и напряжения в процессе анализа электрических цепей предполагает найти комплексное представление для активной, реактивной и полной мощности. На первый взгляд эта задача не должна вызывать затруднений. Достаточно в выражение для мощности подставить комплексные ток и напряжение.

Резонансные свойства электрических цепей синусоидального тока Еще раз подчеркнем замечательную особенность цепи в режиме резонанса. Токи протекающие в ветвях реактивных элементов могут принимать значения в десятки и сотни раз больше общего тока цепи. Поэтому резонанс цепи называют резонансом токов. Очень важно и то, что они противофазны

Трехфазные электрические цепи Соотношение между линейными и фазовыми напряжениями и токами

Магнитные цепи и электромагнитные аппараты Основы теории магнетизма Относительная магнитная проницаемость Анализ магнитных цепей постоянного тока

Электромагнитные устройства Перечень электромагнитных устройств очень большой. В лекции будут рассмотрены примеры применения теории магнитного поля к построению сварочных трансформаторов, ферромагнитных стабилизаторов, электромагнитных реле.

Физические основы ферромагнитных стабилизаторов

Принцип работы электромагнитных механизмов. Электромагнитные реле. В состав автоматизированных, полуавтоматизированных и ручных систем уаправления электроэнергетическими установками, электроприводами, технологическими установками и т.п. входят электромагнитные устройства (контакторы, пускатели, реле, электромагниты). С помощью этих устройств производится регулирование токов и напряжений генераторов. Они выполняют функции контроля и защиты установок, потребляющих электроэнергию. Основными частями электромагнитных устройств являются электромагнитные механизмы: электрические контакты, механический или электромагнитный привод контактной группы, кнопки управления.

Трансформаторы Трансформатор для технических целей впервые был применен П.Н. Яблочковым в 1876 году для питания электрических свечей. Широкое применение трансформаторы получили после того, как М.О. Доливо-Добровольским была предложена трехфазная система передачи электроэнергии и разработана конструкция первого трехфазного трансформатора (1891г.) Принцип работы однофазных трансформаторов Если разомкнуть цепь вторичной обмотки, то ее ток I2 станет равным нулю

Режим работы трансформаторов

Опыт короткого замыкания трансформатора Опытом короткого замыкания называется испытание трансформатора при короткозамкнутой цепи вторичной обмотки и номинальном токе первичной обмотки. Схема для проведения опыта короткого замыкания приведена на рис. 11.3. Опыт проводится для определения номинального значения тока вторичной обмотки, мощности потерь в проводах и падения напряжения на внутреннем сопротивлении трансформатора.

Внешняя характеристика трансформатора определяет зависимость напряжения вторичной обмотки U2 от тока вторичной обмотки I2 при постоянном коэффициенте мощности cos j2 = const и номинальном напряжении первичной обмотки U1. Часто для определения внешней характеристики пользуются относительными единицами

Полупроводниковые приборы Электроника – это наука, изучающая принципы построения, работы и применения различных электронных приборов. Именно применение электронных приборов позволяет построить устройства, обладающие полезными для практических целей функциями – усиление электрических сигналов, передачу и прием информации (звук, текст, изображение), измерение параметров, и т.д.

Электронно-дырочный переход. Основные параметры При обратном включении Р-n перехода (минус к Р области, плюс к n области) запирающий слой расширяется

Биполярные транзисторы. Транзисторы - это электронные приборы, предназначенные для усиления и преобразования сигналов. Наиболее распространены транзисторы с двумя р-п переходами и тремя выводами. Их называют биполярными, так как в работе используются носители обоих знаков.

Полевые транзисторы Биполярные транзисторы нашли широкое применение в электронике, но они имеют существенные недостатки. Недостатки обусловлены двумя факторами. Во-первых, активный режим работы предполагает, что эмиттерный переход транзистора открыт и его сопротивление мало. Поэтому такой прибор потребляет заметную мощность от источника входного сигнала. Во вторых, участие в работе транзистора носителей зарядов двух знаков обуславливает высокий уровень внутренних шумов из-за самопроизвольных рекомбинаций в объеме эмиттера и коллектора. От этих недостатков свободны полевые транзисторы. Величина тока этого транзистора управляется электрическим полем закрытого р-n перехода. Поэтому такой прибор практически не потребляет ток из входной цепи.

Тиристор – это полупроводниковый прибор, способный под действием сигнала переходить из закрытого состояния в открытое. Благодаря этому свойству тиристоры применяются в цепях коммутации высоких мощностей и импульсных схемах информационной электроники.

Электронные устройства Большинство электронных управляющих, измерительных, вычислительных и других устройств питаются напряжением постоянного тока. Сетевое напряжение переменное, с частотой 50 Гц одно или трехфазное. Поэтому практически каждый электронный прибор снабжен автономным преобразователем напряжения переменного тока в напряжение постоянного тока. Значительно лучшими параметрами обладает схема двухполупериодного выпрямителя, разработанная в 1901 г. академиком Миткевичем

Сглаживающие фильтры Анализ работы рассмотренных схем выпрямителей показал, что напряжение на их выходе не постоянное, а пульсирующее. Применять такое напряжение непосредственно для питания электронных устройств нельзя. Существенно снизить уровень пульсаций позволяют сглаживающие фильтры. В основу их построения положено применение реактивных элементов - индуктивностей и емкостей.

Стабилизаторы напряжения Сглаживающие фильтры позволяют существенно уменьшить уровень пульсаций, но не исключают их полностью. Исключить пульсации позволяют стабилизаторы напряжения. Различают параметрические и компенсационные стабилизаторы. В составе преобразователей малой мощности как правило применяются параметрические стабилизаторы.

Резистивные усилители низкой частоты Усилителями называются устройства, в которых сравнительно маломощный входной сигнал управляет передачей значительно большей мощности из источника питания Передаточная характеристика позволяет рассмотреть различные режимы работы усилительного каскада (классы усиления).

Дифференциальный усилитель Рассмотренный усилитель по схеме с общим эмиттером применяется достаточно широко, но имеет ряд недостатков - малое входное и большое выходное сопротивления, зависимость коэффициента усиления от параметров нагрузки. Эти недостатки частично или полностью исключены в дифференциальном усилителе.

Усилитель по схеме с общим коллектором

Операционный усилитель Современные разработчики электронной аппаратуры стремятся использовать готовые функциональные узлы в виде интегральных микросхем (ИМС). Схемные решения ИМС тщательно проработаны и обеспечивают высокое качество аппаратуры. Предприятия, выпускающие микросхемы, заинтересованы в их сбыте. Поэтому они стремятся разработать универсальные микросхемы, которые можно применять в качестве различных  функциональных узлов. Это повышает их спрос. Одной из таких ИМС является операционный усилитель (ОУ).

Импульсные устройства Кроме напряжения синусоидальной формы в практике электротехники и электроники применяются напряжения других форм. Наиболее широко применяется импульсное напряжение. Импульсным называется прерывистое во времени напряжение (сигнал) любой формы. Под формой сигнала понимается закон изменения во времени напряжения или тока.

Компаратор – это устройство сравнения двух напряжений. Такие возможности приобретают ОУ в нелинейном режиме работы. Для анализа процесса сравнения обратимся еще раз к передаточной характеристике ОУ

Генераторы импульсных сигналов Формирующие цепи При генерации импульсных сигналов различной формы необходимо формирование временных интервалов, задающих длительность импульсов и пауз, частоту повторения импульсов и т.п. Эта задача решается с помощью формирующих цепей содержащих реактивные элементы. Наиболее простыми и надежными являются RC-цепи. Как правило, они применяются в качестве разделительных, дифференцирующих или интегрирующих цепей.

  Мультивибратором называется генератор периодически повторяющихся прямоугольных импульсов. Мультивибратор может быть выполнен на транзисторах, ОУ или на логических элементах. Рассмотрим схему мультивибратора на ОУ

  Генераторы линейно изменяющегося напряжения (ГЛИН) формируют напряжение пилообразной формы, которое необходимо для создания разверток на экранах осциллографов, телевизоров и др. индикаторов, для преобразователей аналоговых величин в цифровые, преобразователей  амплитуда-время и для др. целей.

 Появление импульсных устройств создало материальную базу для разработки цифровых измерительных приборов, систем передачи цифровой информации, ЭВМ. Вся эта техника осуществляет операции над цифровыми сигналами. Такие сигналы принимают лишь два значения "0" или "1". Их называют состояниями. Число состояний m = 2. Физически состояния задаются определенным уровнем напряжения, например "0" – напряжением , "1" – напряжением .

Основные операции и элементы алгебры логики. Основой построения любого устройства, использующего цифровую информацию, являются элементы двух типов: логические и запоминающие. Логические элементы выполняют простейшие логические операции над цифровыми сигналами. Запоминающие элементы служат для хранения цифровой информации (состояния разрядов кодовой комбинации). Булевы функции (функции логики).

Минимизация булевых функций Булевы функции в СДНФ и в СКНФ обычно избыточны. Поэтому этапу построения схемы должно предшествовать упрощение формул или минимизация. Цель минимизации – получить минимально необходимое количество логических элементов в схеме. В основу минимизации положены правила и законы булевой алгебры

Комбинационные устройства Комбинационными называются логические устройства, выходные функции которых определяются входными логическими функциями в момент их воздействия. К комбинационным устройствам относятся шифраторы, дешифраторы, преобразователи кодов, мультиплексоры и демультиплексоры, сумматоры и компараторы.

Методика расчёта линейных электрических цепей переменного тока

Метод активных и реактивных составляющих токов Этот метод предусматривает использование схемы замещения с последовательным соединением элементов. В данном случае три параллельные ветви рассматриваются как три отдельные неразветвлённые цепи, подключенные к одному источнику с напряжением U. Поэтому в начале расчёта определяем полные сопротивления ветвей

Метод проводимостей

Метод проводимостей основан на применении схемы замещения с параллельным соединением элементов.

Расчёт сложных цепей переменного тока символическим методом Комплексные числа Для расчёта электрических цепей переменного тока с применением комплексных чисел необходимо знать формы их выражения. Алгебраическая форма имеет вид: А = а + jb (3.1) где а – вещественная часть, b – мнимая часть, j =  – мнимая единица.

Действия с комплексными числами на этих калькуляторах выполняются в алгебраической форме. Однако они позволяют переводить комплекс из алгебраической формы в показательную и наоборот.

Характеристики и параметры цепей переменного тока в комплексной форме.

Так как теоретический материал по данной теме рассмотрен в учебниках, напомним только основные формулы.

Ток в комплексной форме:

I = I * ejy

где φ - начальная фаза, I - действующее значение тока.

Напряжение в комплексной форме:

U = U * ejy

Запишем систему уравнений в символической форме записи. Для этого от функций времени перейдем к изображению синусоидальных функций времени комплексными числами. Соответственно, дифференциальные и интегральные зависимости между напряжениями и токами в цепях синусоидального тока, мы заменяем линейными зависимостями между комплексными токами и напряжениями:

Тогда система уравнений, записанная по закону Кирхгофа, будет иметь вид:

Расчет цепи будем выполнять в комплексной форме записи, для чего перейдем от ЭДС, записанных как функции времени, к их изображению комплексными числами:

;

;

Рассчитаем комплексные сопротивления ветвей:

;

;

.

Метод узловых и контурных уравнений Сущность метода состоит в составлении  системы уравнений по первому и второму законам Кирхгофа. Расчёт производим в следующем порядке. По первому закону составляем (n – 1) независимых уравнений, где n – количество узлов в схеме. Выбираем узел А.. По второму закону нам остаётся составить два уравнения, так как число уравнений в системе должно быть равно количеству неизвестных токов, а их три. Направления токов в ветвях выбираются произвольно. Направления обхода контуров принимаем (услов- но) по часовой стрелке. Таким образом, система уравнений в комплексной форме включает в себя одно уравнение, составленное по первому закону Кирхгофа и два уравнения, составленные по второму закону

Метод контурных токов

 Намечаем в независимых контурах заданной цепи, контурные токи IK1 и IK2 – некоторые расчётные комплексные величины, которые одинаковы для всех ветвей выбранных контуров.Направления контурных токов принимаются произвольно Для определения контурных токов составляем два уравнения по второму закону Кирхгофа:

Метод упрощения схем

 Для того чтобы показать, как рассчитывать цепь методом упрощения схем, предположим, что в источнике с э.д.с. E1 произошло короткое замыкание между зажимами, то есть E1 = 0.

Расчёт трёхфазной цепи при соединении приемника в звезду При расчёте несимметричной трехфазной цепи с потребителем, сое­динённым в звезду, схема может быть без нулевого провода или с нуле­вым проводом, который имеет комплексное сопротивление ZN. В обоих случаях система линейных и фазных напряжений генератора симметричны. Система линейных напряжений нагрузки останется также симметричной, так как линейные провода не обладают сопротивлением. Но система фазных напряжений нагрузки несимметрична из-за наличия напряжения смещения нейтрали UN. Трехфазная цепь при соединении приёмника в звезду представляет собой цепь с двумя узлами, расчёт подобных цепей наиболее целесообразно вести методом узлового напряжения.

Расчёт трёхфазной цепи при соединении приёмника в звезду без нулевого провода.

Если задана трехфазная цепь без нулевого провода, то формула для определения напряжения смещения нейтрали не должна включать проводимость нулевого провода:

 Далее фазные напряжения и токи нагрузки определяются аналогично предыдущему примеру,  затем делается проверка:

 IA + IB + IC = 0

Расчёт неразветвлённой цепи с несинусоидальными напряжениями и токами

 Составляем схему заданной цепи, подключая последовательно соединённые приёмники к источнику напряжения

 Третья гармоника.

Примеры выполнения курсовой работы

Расчет методом узловых потенциалов Будем рассматривать установившийся режим в линейной цепи при гармоническом воздействии

Расчет методом эквивалентного генератора В соответствии с заданием рассчитаем ток в пятой ветви. Крайние точки в пятой ветви обозначим буквами «а» и «b». Удаляем из электрической цепи пятую ветвь вместе с источником тока, подсоединенного параллельно ей.

 Расчет электрической цепи с взаимоиндуктивными связями методом контурных токов

Расчет методом узловых потенциалов

Расчет методом контурных токов Составим котурную матрицу В. Количество строк матрицы равно числу q независимых контуров, а номер строки - номеру контура графа. Число столбцов матрицы n соответствует числу ветвей в схеме (n= 9), номер столбца определяется номером ветви. Отметим, что элементы строки матрацы В являются коэффициентами уравнения, записанного по второму закону Кирхгофа для соответствующего электрического контура.

Примеры выполнения заданий по дисциплине Теоретические основы электротехники

Сборник включает задания по дисциплине «Теоретические основы электротехники», являющейся базовой для специальности – электроснабжение промышленных предприятий. Содержание сборника отражает коллективный опыт преподавания курса ТОЭ на кафедре Электроснабжения промышленных предприятий. Учтён также опыт кафедр, теоретических основ электротехники и теории электрических цепей ведущих электротехнических вузов страны. Материал, используемый при составлении заданий, соответствует разделам действующей программы дисциплины «Теоретическая электротехника» для высших учебных заведений.

Расчёт электрического поля, усилий, энергии и электрических параметров простейших конструкций Целью задания является закрепление теоретического материала, излагаемого в первой части курса – физические основы электротехники (ФОЭ). Теоретическая часть расчётов базируется на уравнениях поля в интегральной форме. Особенности конструкций элементов (сферическая и цилиндрическая симметрия) существенно упрощают расчётную часть и позволяют при выполнении задания сосредоточить внимание на физической стороне процессов.

Пример выполнения задания

Расчёт полной электрической энергии конденсатора

Определение выражения для электрической ёмкости конденсатора на единицу длины

Расчёт магнитной цепи с магнитопроводом постоянной магнитной проницаемости Целью задания является закрепление теоретического материала, изложенного в первой части курса – физические основы электротехники (ФОЭ). Теоретическая часть расчётов базируется на интегральных понятиях магнитной цепи: магнитном потоке, магнитном напряжении, магнитодвижущей силе (м.д.с.) и других. Предлагается линейный вариант магнитной цепи, т.е. пренебрегается зависимостью магнитной проницаемости среды (ферромагнитного материала) от напряжённости магнитного поля.

Пример выполнения расчётно-графического задания

Законы Кирхгофа и расчёт резистивных электрических цепей Целью задания является закрепление теоретического материала, излагаемого в первой части курса – в разделе « методы расчёта линейных электрических цепей». Заданием предусмотрена отработка расчётных приёмов, основанных на использовании: законов Кирхгофа, принципа наложения, сворачивания цепей со смешанными соединениями ветвей, простейших преобразований резистивных цепей, а так же расчёта резистивных цепей методами контурных токов, узловых напряжений и эквивалентного генератора.

Второй закон Кирхгофа

Преобразования схемы звезда треугольник

Принцип наложения

Метод узловых напряжений При расчёте цепи методом узловых напряжений неизвестными в системе уравнений будут узловые напряжения uk0 (иногда обозначается одним индексом uk), равные разности потенциалов k-го и нулевого (базисного) узлов. Потенциал нулевого узла принимается равным нулю, а номер выбирается произвольно. Число неизвестных и уравнений должно быть равно числу узлов цепи минус единица.

Метод эквивалентного генератора.

Пример выполнения расчётно – графического задания Для цепи, схема которой изображена на рисунке 3.7, составить необходимое число структурных и компонентных уравнений, для определения токов ветвей. Все источники и параметры элементов считать заданными.

Пример выполнения расчётно – графического задания часть 2 В цепи, схема которой приведена на рисунке 3.8 а определить ток i3 при заданных значениях параметров схемы: r = r1 = r2 = 2 Ом, r3 = 4 Ом, e1 = 4 В.

Расчет методом контурных токов

Расчет методом узловых напряжений Цепь содержит 4 узла, следовательно, система уравнений по методу узловых напряжений должна состоять из трёх уравнений. Однако, в конкретной схеме при определении коэффициентов неизбежно возникнет трудность. Существо её в том, что ветвь с идеальным источником напряжения имеет нулевое сопротивление, т.е. бесконечно большую проводимость

Расчет методом эквивалентного генератора

Расчет методом наложения Найдём частичные токи через сопротивление r1, от каждого источника в отдельности, заменяя исключённые источники их внутренними сопротивлениями.

Расчёт линейных электрических цепей при гармоническом (синусоидальном) воздействии

Основные законы электрических цепей в комплексной форме

Баланс активных мощностей Целью задания является отработка техники расчёта гармонических установившихся режимов в линейных электрических цепях, закрепление теоретического материала в части применения комплексного метода и построения векторных диаграмм гармонического процесса. Заданием предусмотрена отработка расчётных приёмов сворачивания цепи со смешанным соединением r,L,C – элементов к одному эквивалентному параметру (комплексным сопротивлению или проводимости). Задание содержит проверку баланса активных и реактивных мощностей.

Пример выполнения расчётно-графического задания

Определение полного тока

Построить в выбранных масштабах для тока и напряжения векторные диаграммы

Баланс активных и реактивных мощностей

Расчёт трёхфазных электрических цепей Расчётно-графическое задание предназначено для закрепления теоретического материала по теме «многофазные электрические цепи». Целью задания является отработка техники расчёта симметричных и несимметричных, гармонических, установившихся режимов в трёхфазных электрических цепях. Задание так же содержит расчёт активных и реактивных мощностей трёхфазных приёмников электрической энергии.

Пример выполнения расчётно-графического задания

Топографическая диаграмма напряжений

Формирование уравнений сложных r,L,C - цепей . и расчёт установившегося гармонического (синусоидального) режима В задание включены задачи для расчёта электрических цепей сложной конфигурации с синусоидальными источниками электрической энергии. Целью задания является отработка расчётных приёмов, подробно рассмотренных в предыдущих заданиях, в частности, задания №4 в части использования комплексного метода расчёта электрических цепей. Топология цепей в задании соответствует топологии цепей в задании №3, но кроме резистивных элементов цепи содержат индуктивности и ёмкости.

Метод узловых напряжений Метод эквивалентного генератора Идея метода достаточно подробно изложена в РГЗ №3. Как и при использовании метода контурных токов, применение метода узловых напряжений для расчёта гармонического режима требует записи всех уравнений в комплексной форме.

Метод контурных токов пример выполнения задания

Решить задачу методом узловых напряжений Цепь содержит 4 узла, следовательно, система уравнений по методу узловых напряжений должна состоять из трёх уравнений. Однако, в схеме на рис. 6.4 есть ветвь с идеальным источником напряжения, который имеет нулевое сопротивление, т.е. бесконечно большую проводимость.

Решить задачу методом эквивалентного генератора

Математика , физика курсовая, информационные системы. Машиностроительное черчение