Решение задач по физике примеры Колебания

Алгоритмы маршрутизации
Мультикомпьютеры
Выбор топологии вычислительной системы
Сбои в персональных компьютерах
Запись на диски и в файлы
Процессы и ресурсы
Балансировка вычислительной
нагрузки процессоров
Математическая статистика
Предел функции Интегрирование
Решение интегралов
Вычисление двойных и тройных интегралов
Курсовая на вычисление интеграла
Формула Тейлора для ФНП
Производная сложной ФНП
Интегрирование функций нескольких переменных
Геометрические свойства интеграла ФНП
Типовые задачи
Вычислить интеграл
Вычислить момент инерции
Вычислить повторный интеграл
Решения задачи Коши
Метод Эйлера
Оформление сборочного чертежа
Изображения
Способы преобразования чертежа
 Нанесение размеров
Аксонометрические проекции
Резьбы, резьбовые изделия
Разъемные соединения
Неразъемные соединения
Шероховатость поверхности
Сборочный чертеж
Деталирование чертежей
Решение задач по физике примеры
Электротехника
Оптика
Билеты к экзамену по физике
Теория электромагнитного поля
Элементы электрических цепей
Промышленная электроника
Цифровая электроника
Теоретические основы электротехники
Сопротивление материалов
Метод сечений
Перемещения и деформации
Общие принципы расчета конструкции
Моменты инерции сечения
Кручение бруса
Определение опорных реакций
Момент сопротивления
Метод начальных параметров
Косой изгиб
Внецентренное растяжение и сжатие
Теории прочности
Метод сил
Расчет на усталостную прочность
Задача Эйлера
Формула Ясинского
Определение прогиба и напряжений
Запас усталостной прочности
Основы теории упругости
Основы теории пластичности
Рождение абстрактного искусства
Художники эпохи Просвещения
Теоретическая механика

Общие свойства гармонических колебаний.

Задача Частица совершает гармонические колебания по оси X. В некоторый момент времени смещение частицы от положения равновесия x1 = 0,3 м, ее скорость V1= – 4 м/c и ускорение A1= – 30 м/с2. Определите амплитуду и частоту колебаний частицы.

Решение.  Уравнение движения частицы x = A×cos(wt + j0). В некоторый момент времени t1 cмещение  частицы от положения равновесия x1 = A×cos(wt1 + j0), ее скорость V1 = – Aw×sin(wt1 + j0),  а ускорение A1 = – Aw2cos(wt1 + j0).  Поскольку при гармонических колебаниях A1 = – w2x1,  имеем w = . Суммируя функции cos2(wt1 + j0) + sin2(wt1 + j0)  = (x1/А)2 + (V1/Аw)2 = (1/А)2(x12 - x1×V12/A1) = 1, получаем А = x1.

 Ответ:  А = x1 = 0,5 м; w = = 10 c-1.

Монета лежит на горизонтальной подставке, движущейся по вертикальной оси по закону: y = A×sinwt, где w = 10 с-1. При каких амплитудах колебаний подставки движение монеты будет гармоническим? На какой максимальной высоте H относительно среднего положения подставки окажется монета в течение первого периода колебаний, если А = 0,2 м. Ускорение свободного падения g = 10 м/с2.

Решение По второму закону динамики для монеты N - mg = ma, где N – сила, действующая на монету со стороны подставки вверх (по оси Y), а – ускорение монеты. Движение монеты будет гармоническим до тех пор, пока она не начнет «отрываться» от подставки. При гармоническом движении монеты ее ускорение a =  = –Aw2sinwt. Моменту начала отрыва монеты от подставки при постепенном увеличении амплитуды соответствует условие N = 0. При этом «пограничном» условии g = Aw2sinwt. Таким образом, при А = g/w2 движение монеты еще происходит по гармоническому закону (монета «теряет контакт» с подставкой пока только в верхних точках траектории); при А > g/w2 движение монеты уже не будет гармоническим. В частности, при заданных условиях задачи движение монеты будет гармоническим при А £ 0,1 м. При бόльших амплитудах монета начнет «подскакивать» над подставкой.

Амплитуда колебаний грузика на пружинке возросла в два раза. Во сколько раз увеличились энергия колебаний и площадь его фазовой траектории . 

Два тела массами m1 = 1 кг и m2 = 2 кг находятся на гладкой горизонтальной поверхности и связаны пружиной (k = 1,5×102 Н/м), длина которой L = 12 см. Пружину сжимают на величину DL = 6 см и без толчка отпускают. Какова частота возникших колебаний? Определите амплитуды колебаний каждого тела.

Грузик массой m подвешен на нерастяжимой нити, верхний конец которой перемещают по вертикали по закону: y = A×sinwt. Величина А постепенно растет. При каких минимальных А колебания грузика станут негармоническими? В каких точках начнется отклонение от гармонического закона колебаний грузика?

Найти частоту малых свободных колебаний w0 физического маятника – тела произвольной формы, закрепленного на горизонтальной оси, не проходящей через его центр тяжести. Момент инерции тела относительно этой оси равен J, его масса m, а расстояние от оси до центра тяжести тела равно b.

Решение При отклонении тела от положения устойчивого равновесия (ось вращения и центр тяжести находятся на одной вертикали) появляется момент силы тяжести, действующей на тело, направленный против вектора его углового смещения a. Уравнение динамики вращательного движения твердого тела относительно закрепленной оси будет иметь вид: .

Знак минус здесь обусловлен тем, что направления векторов момента силы тяжести и углового смещения при любом положении тела противоположны. Как мы видим, данное дифференциальное уравнение не является линейным. Однако при малых углах (a << 1) sina » a) и уравнение приобретает знакомую форму (2.1):

В устройстве, показанном на рисунке, блок представляет собой сплошной однородный цилиндр массой М = 8 кг, который может вращаться вокруг оси без трения. Масса груза т = 6 кг. Жесткость пружины k = 1000 H/м. Считая, что проскальзывание нити по блоку отсутствует, а сама нить невесома и нерастяжима, найти частоту малых колебаний груза w0.

Решение Выберем систему отсчета, в которой одна координатная ось направлена вертикально вниз (ОХ), а другая (OZ) – перпендикулярно плоскости рисунка от нас (см. рис.). Пусть начало отсчета на оси ОХ соответствует положению груза при недеформированной пружине. В этом случае координата x груза будет одновременно равна деформации пружины и уравнение движения груза в проекции на ось ОХ можно записать в виде:

Задачи для самостоятельного решения.

Потенциальная энергия частицы массы т в одномерном силовом поле зависит от ее координаты х по закону U(x) = U0(1 – cos ax), U0 и а – постоянные. Найдите частоту малых колебаний этой частицы около положения равно­весия.

Груз массой m = 0,2 кг, подвешенный на пружине жесткостью k = 20 Н/м, лежит на подставке так, что пружина не деформирована. Подставку убирают, и груз начинает двигаться. Найдите закон движения груза и его максимальную скорость.

Доску положили на два быстро вращающихся навстречу друг другу (в противоположных направлениях) цилиндрических ролика. Расстояние между осями роликов l = 80 см, коэффициент трения скольжения между стержнем и роликами m = 0,16. Покажите, что стержень будет совершать гармонические колебания и найдите их частоту w0.

В кабине самолета подвешен маятник. Когда самолет летит без ускорения, маятник качается с частотой w0. Какова будет частота колебаний маятника, если самолет взлетает с ускорением а, направленным под углом a к горизонту? Отдельно рассмотрите случай, когда а = g и a = 0.

* Кольцо массы М = 0,3 кг может скользить без трения по горизонтальному стержню в установке, изображенной на рисунке. Кольцо соединено двумя одинаковыми  пружинками жесткостью k = 15 Н/м , с точками А и В установки. Установка вращается с постоянной угловой скоростью W = 6 рад×с вокруг вертикальной оси, проходя­щей через середину стержня. а) Найдите частоту малых колеба­ний кольца. б) При какой угловой скорости W колебания не возникнут?

Затухающие колебания.

 У реального осциллятора всегда есть потери колебательной энергии. Поэтому свободные колебания будут затухающими (не гармоническими). В частности, учет сил вязкого трения (Fc = r×) для механического осциллятора или сопротивления электрических контуров (U = RI = R) приводит к дифференциальному уравнению типа: , (4.1)

где b – новая константа называемая коэффициентом затухания, w0 – собственная частота осциллятора в отсутствии затухания. Вид решения этого уравнения как раз и зависит от соотношения констант w0 и b, а их значения определяются параметрами конкретной колебательной системы.

1) Для случая b < w0 (малое затухание) его решением является функция:

Амплитуда и начальная фаза колебаний как обычно определяются начальными условиями.

Задача В условиях предыдущей задачи определить параметры затухающих колебаний в системе: а) время релаксации амплитуды (tA); б) количество колебаний, за которое амплитуда уменьшится в e раз (Ne); в) логарифмический декремент затухания g ;

Таким образом оказалось, что добротность равна числу колебаний осциллятора, за которое амплитуда уменьшается в 23 раза.

Задача При какой величине коэффициента вязкости r в устройстве, рассмотренном в задачах 4.1-4.3, реализуется критический режим. Определить зависимость смещения от времени в критическом режиме, если в начальный момент времени телу в положении равновесия сообщают скорость V0 = 1 м/с.

Решение Критический режим колебаний реализуется при b = w0 = 10 с-1. Для рассматриваемой колебательной системы:

  200 кг/с.

 Общее решение для критического режима может быть записано в виде:

.

Начальные условия:

В представленных выше задачах (4.1 – 4.6) затухание колебаний обусловлено наличием вязкого трения. Колебания в системе с “сухим трением” рассмотрим на примере следующей задачи.

Задача

На горизонтальном столе лежит брусок массы m = 0,5 кг, прикрепленный горизонтальной пружиной к стене. Коэффициент трения скольжения бруска о поверхность стола равен m = 0,1. Брусок сместили по оси Х так, что пружина рас­тянулась на x0 = 6,3 см, и затем отпустили. Жесткость пружинки k = 100 Н/м, а ее масса пренебрежимо мала.

а) Найти число колебаний, которое совершит брусок до остановки.

б) Построить график зависимости от времени смещения бруска от начального положения х(t);

Движение бруска от положения с координатой х(1) вправо. ()

В уравнении движения изменится лишь знак слагаемого m×mg в правой части

 -kx – m×mg.

После аналогичных переобозначений приходим к решению для второго этапа движения ( обозначим его x(2)):

.

Отметим, что отсчет времени в этой записи решения следует начинать от начала данного этапа движения. A1 = x1 + x0 = - 4,8 см. Частота колебаний, конечно, прежняя.

К концу второго этапа движения координата тела окажется равной:

  4,3 см.

Музыкальный камертон имеет собственную частоту колебаний n = 1000 Гц. Через какое время громкость его звучания уменьшится в п = 106 раз, если логарифмический декремент затухания равен g = 0,0006?

Последовательный резонансный колебательный контур состоит из конденсатора емкости С, катушки индуктивности L, сопротивления, равного критическому для данного конту­ра и ключа. При разомкнутом ключе конденсатор зарядили до на­пряжения U0 после чего ключ замкнули. Найдите ток I в контуре как функцию времени t. Чему равна при этом максимальная сила тока в контуре Imax?

Найдите закон изменения заряда на конденсаторе для контура, показанного на рисунке. Параметры контура С, L и R считать известными. Определите, при каком значении активного сопротивления R затухающие колеба­ния переходят в релаксацию.

Весьма наглядными амплитудные и фазовые соотношения между колебаниями, делает векторная форма представления колебаний. В частности, она позволяет качественно и количественно описывать вынужденные колебания. Каждой гармонической функции можно сопоставить вектор на плоскости, длина которого равна амплитуде колебания, а полярный угол – его фазе. Для гармонических колебаний этот вектор вращается относительно начала координат (точки О) против часовой стрелки с угловой скоростью w, равной частоте колебаний. Проекция вектора на ось Х и дает значение гармонической функции.

Для определения амплитуды вынужденных колебаний А и фазового сдвига a достаточно провести сложение векторов

 

Свободные колебания железного стержня, подвешенного на пружине, происходят с частотой wс = 20 рад×с-1, причем амплитуда колебаний уменьшается в h = 5 раз в течение вре­мени tη = ln5 » 1,61 с. Вблизи нижнего конца стержня помещена катушка, питаемая переменным током (см. рисунок). Считая, что амплитуда вынуждающей силы неизменна, найти:

а) коэффициент затухания b,

б) число колебаний Ne, за которые амплитуда уменьшается в е раз и добротность Q, в) при какой частоте тока через катушку wрт колебания стержня достигнут наибольшей амплитуды?

Решение

На вопросы (а) – (б) легко ответить, исходя из сведений о затухающих колебаниях:

В условиях рассматриваемой задачи мм.

Приведем также точный вид амплитудной резонансной кривой для рассмотренного случая вынужденных колебаний. Горизонтальным пунктиром указан уровень амплитуды вынужденных колебаний в  раз меньший резонансного (что соответствует уменьшению колебательной энергии в 2 раза). Он определяет “ширину резонансной кривой” Dw. Нетрудно показать, что Dw = 2b и понятие добротности получает новую трактовку:

.  (5.10)

Для колебательной системы, описанной в предыдущей задаче, построить зависимости от частоты амплитуды вынужденных колебаний, амплитуд поглощения Ап и дисперсии Ад.

Доказать, что при вынужденных колебаниях экстремумы амплитуды дисперсии наблюдаются при частотах вынуждающего воздействия ω @ ωр ± β.

Частота свободных колебаний некоторой си­стемы wс = 50,0 рад×с-1, резонансная частота wр = 49,9 рад×с-1. Определить добротность Q этой системы.

Найти резонансную частоту wр для некоторого механического осциллятора, если амплитуды смещений при вынужденных колебаниях этого осциллятора одинаковы при частотах w1 = 20 рад×с-1 и w2 = 40 рад×с-1.

Определить частоту w*р, соответствующую резонансу скорости некоторого механического осциллятора (когда амплитуда скорости колеблющегося тела максимальна), если амплитуды скорости при частотах вынуждающей силы w1 = 10 рад×с-1 и w2 = 40 рад×с-1 одинаковы.

При некоторой скорости движения поезда его вагоны особенно сильно раскачиваются на рессорах в результате периодических толчков колес о стыки рельс. Когда поезд стоит на станции, рессоры деформированы под нагрузкой вагонов на Dх = 10 см. Длина рельс l = 12,5 м. Определить по этим данным скорость движения поезда.

На крутильный маятник, описанный в задаче 2.10, действует внешняя сила, момент которой меняется по закону N(t) = Nm×coswt. Определить работу сил трения, действующих в системе, за время, равное периоду колебаний. Установившиеся вынужденные колебания маятника происходят по закону: j = jm cos (wt - a).

Грузик массы m = 100 г подвешен на невесомой пружинке с жесткостью k = 32,4 Н/м. Под действием вынуждающей вертикальной гармонической силы грузик совершает установившиеся колебания с частотой w = 17 рад×с-1. При этом колебания шарика отстают по фазе от вынуждаю­щей силы на a = p/4. Определить добротность данного осциллятора.

Математика , физика курсовая, информационные системы. Машиностроительное черчение