Решение задач по физике примеры Электротехника

Физика
Решение задач

Черчение

ТОЭ
Электроника

Переменный ток.

Задача

На зажимы цепи переменного тока подано напряжение с амплитудным значением U0 = 308 В, гармонически изменяющееся с частотой n = 50 Гц. В цепь включены последовательно соединенные резистор R = 80 Ом, катушка с индуктивностью L = 0,56 Гн и конденсатор с ёмкостью С = 30 мкФ. 

Найти: а) амплитудное значение силы тока в цепи, б) сдвиг по фазе между током и напряжением.

Решение

Построение векторной диаграммы удобно начать с вектора, соответствующего силе тока. Для последовательного контура в условиях квазистационарности этот вектор является общим для всех элементов цепи. Направим его по горизонтали вправо. Напряжение на резисторе совпадает по фазе с силой тока, протекающего по нему, поэтому и вектор напряжения на резисторе направим так же. Длина этого вектора равна произведению амплитудного значения силы тока в цепи на сопротивление резистора:

 

 

 

Рассмотрим далее вопрос о мощности в цепи переменного тока и о понятиях действующих значений тока и напряжения.

Мгновенная мощность для случая, когда гармоническое напряжение U0cos(wt) приложено к цепи с омической нагрузкой по закону Джоуля–Ленца может быть записана в виде:

P (t) = U0cos(wt)×I0cos(wt – j) . (6.11)

Простейшие тригонометрические преобразования позволяют показать, что это быстропеременная функция с частотой 2w. В то же время тепловое действие тока определяется, очевидно, не мгновенным, а средним (за большой по сравнению с периодом колебаний промежуток времени) значением мощности áPñ. Это значение может быть найдено усреднением P(t) за период:

. (6.12)

Величину cosj называют «коэффициентом мощности». Поскольку U0×cosj = UR = I0R, то

 (6.13)

Задача

Найти действующее значение тока, если максимальное значение его равно I0, а сам ток зависит от времени по закону, показанному на рисунке.

Решение

В рассматриваемом случае I(t) = k×t в пределах одного периода колебаний, где k =  (см. рис.). Тогда:

.

Таким образом  . Точно так же получаем .

Рассмотрим ещё одну задачу, в которой вскрывается суть важных для рассмотрения цепей переменного тока понятий омического, активного и полного сопротивлений цепи переменного тока.


Цепь переменного тока состоит из последовательно включенных сопротивления R = 80 Ом, индуктивности L = 0,56 Гн и емкости С = 30 мкФ. Цепь включена в бытовую электросеть (напряжение U = 220 В, f = 50 Гц). Найти: а) действующее значение силы тока в цепи, б) сдвиг по фазе между током и напряжением.

В условиях предыдущей задачи найти действующие значения напряжений, UR , UL и Uc на зажимах каждого из элементов цепи и выделяющуюся в цепи мощность Р.

В цепи переменного тока используется плоский конденсатор, изолятор которого промок и он стал нагреваться. При частоте f = 50 Гц коэффициент мощности оказался равен 0,6. Определить по этим данным удельное сопротивление изолятора, если его диэлектрическая проницаемость равна e = 4,8.

* К бытовой электросети (на­пряжение U = 220 В, f = 50 Гц) присоединен дроссель, соединенный последовательно с сопротивлением R = 40 Oм. Напряжение, измеренное вольтметром на дросселе равно U1 = 160 В, а на сопротивлении U2 = 80 В. Какие мощности потребляются дрос­селем (Р1) и сопротивлением (Р2)

Переменное напряжение, действующее значение которого U = 10 В, а частота f = 50 Гц, подано на катушку без сердечника с индуктивностью L = 2 мГн и сопротив­лением R = 100 мОм. Найти количество теплоты, выделяющееся в ка­тушке за секунду.

К сети переменного тока с действующим напряжением U = 120 В подключили катушку, индуктивное сопротивление которой ХL = 80 Ом и полное сопротивление Z = 100 Ом. Найти разность фаз меж­ду током и напряжением, а также мощность, потребляемую катушкой.

При какой частоте напряжения, подаваемого на цепочку последовательно соединенных элементов R = 50 Ом, L = 1 мГн, С = 1 мкФ, ток отстает от напряжения по фазе на p/4?

В электрической схеме между точками, находящимися под напряжением U = U0×cosωt , включен конденсатор ёмкости С. Пространство между об­кладками конденсатора заполнено слабо проводящей средой с сопротивлением R. Как зависит от времени сила тока, протекающего через данный участок цепи?

К участку цепи, состоящему из последовательно соединенных элементов R, L и C, приложено переменное напряжение с действующим значением U = 220 В и частотой v = 50 Гц. Сопротивление цепи R = 110 Ом, ёмкость  конденсатора равна 50 мкФ. Индуктивность L подбирается так, чтобы показание вольтметра, включенного параллельно конденсатору, стало максимальным. Чему равна эта индуктивность? Найти показания вольтметра и амперметра в этих условиях.

Параметры последовательного колебательного контура (R, L, C) таковы: С = 5 нФ, R = 0,1 Ом. Какую мощность Р надо подводить к контуру, чтобы поддержи­вать в нем незатухающие колебания на частоте w = 200 рад/c с амплитудой напря­жения на конденсаторе UC0 = 10 В?

Найти условие «баланса токов» для цепочки, состоящей из параллельно соединенных идеальных емкости и индуктивности – минимума силы тока в подводящих проводах.

Волны

Совокупность точек, колеблющихся в одной и той же фазе, составляет волновую поверхность. Волновых поверхностей бесконечно много, «самая передняя» из них называется фронтом волны. Волна, описывающаяся соотношением (7.2), потому и называется плоской, что все ее волновые поверхности – плоскости.

 Если размерами источника волн можно пренебречь (точечный источник), то волновые поверхности являются сферическими и уравнение волны принимает вид (см. задачу 7.1): 

x(r,t) = ×cos(wt – kr). (7.3)

Здесь r – радиус вектор, соединяющий источник с данной точкой пространства; k = (2p/l)(V/V) – т.н. «волновой вектор».

Основные энергетические характеристики переноса энергии волнами (как упругими, так и электромагнитными) таковы:

a) Плотность потока энергии (количество энергии, переносимое волной в единицу времени через единичную площадку, перпендикулярную направлению распространения волны):

S(t) = W0(t)×V. (7.9)

б) Интенсивность волны (среднее по времени значение плотности потока энергии):

I = <S(t)> = <W0(t)>×V. (7.10)

При усреднении по времени плотности энергии волны учтем, что среднее по времени значение квадрата гармонической функции равно 1/2, поэтому, например, для электромагнитной волны – см. (7.8):

Задача

Доказать, что амплитуда сферической волны обратно пропорциональна расстоянию до источника волн r (см. соотношение (7.3)).

Решение.

Чем дальше от источника уходит сферическая волна, тем на большую площадь распределяется испускаемая источником энергия (S = 4pr2). Соответственно, тем меньшая энергия (~ 1/r2) приходится на каждую колеблющуюся частицу. Из формул (7.4) и (7.8) следует, что плотность энергии волны W0(t) пропорциональна квадрату амплитуды колебаний (А2 для упругой, Е2 или В2 для электромагнитной волн). Следовательно, амплитуда колебаний в сферической волне обратно пропорциональна расстоянию от источника до данной точки А ~  ~ 1/r (см. ф-лу (7.3)).

Задача

Используя определенные аналогии между параметрами упругих и электромагнитных волн, укажите относительное расположение максимумов электрического и магнитного поля в бегущих и стоячих электромагнитных волнах.

Решение

Как следует из сопоставления характеристик механических и электромагнитных колебаний (см. п.3), потенциальной энергии упругой волны U0 соответствует энергия электрического поля электромагнитной волны W0Е, а кинетической энергии T0 – энергия магнитного поля W0В. Соответственно, в бегущей электромагнитной волне максимумы энергии электрического и магнитного полей совпадают (так же, как максимумы потенциальной и кинетической энергии в бегущей упругой волне); в стоячей электромагнитной волне максимумы W0Е и W0В должны быть пространственно разнесены на l/4 (как и максимумы U0 и T0 в стоячей упругой волне).

В воде распространяется плоская гармоническая волна, амплитуда которой A = 0,1 мм, а частота w = 104 с-1. Определите скорость молекул воды в точках В и С (на оси и в максимуме – см. рис.7.3.).

Изобразите зависимости от координаты потенциальной и кинетической энергий упругой волны в момент времени, зафиксированный на рис.7.3.

В железном стержне длиной L = 0,5 м с закрепленными концами возбуждена стоячая упругая волна частотой w = 2p ×104 с-1. Изобразить распределение вдоль стержня смещений частиц, потенциальной и кинетической энергии волны, если скорость такой же бегущей по стержню волны V = 5×103 м/с.

В воздухе по оси Х распространяется звуковая волна, зависимость смещений молекул от координаты в некоторый момент времени показана на рис.7.3. Изобразить зависимость давления в воздухе от координаты в этот момент.

Определить скорость продольной упругой волны в железе, если известно, что модуль упругости для железа G = 2,1×1011 Н/м2, а его плотность r = 7,8×103 кг/м3.

Интерференция света

Теперь рассмотрим связь между разностью фаз Dj колебаний, приходящих в точку наблюдения О от двух точечных монохроматических источников (l1 = l2 = l)  и разностью хода Dr = r2 – r1 распространяющихся от этих источников волн (см. рис.8.2). 

Из уравнения волны E = E0 cos(wt - kr) следует, что

 Dj = kDr , (8.3)

где k = 2p/l - волновое число. 

Таким образом, условие максимумов (max) интерференции:

Dr = ml, (8.4,а)

а условие минимумов (min):

 Dr = (2m + 1) l/2,  (8.4,б)

где m = 0, 1, 2, …. называется порядком интерференции.

Расчет интерференционной картины в схеме Юнга.

 В схеме Юнга для получения для получения когерентных волн используется метод деления одной и той же исходной волны на две, затем эти две волны проходят разный путь и вновь собираются вместе (см. рис.8.3). В качестве первичного источника излучения используется точечный монохроматический источник S.

 В опыте Юнга между источником S и экраном Э, на котором наблюдается интерференция, располагается преграда с двумя маленькими отверстиями (или узкими щелями), которые выполняют роль двух вторичных когерентных источников.

Наблюдение интерференции с помощью билинзы.

В этом случае вторичные когерентные источники света получаются в результате создания двух (действительных или мнимых) изображений точечного источника  S в билинзе. Билинза представляет собой разрезанную по диаметру тонкую линзу, обе половины которой раздвинуты на расстояние Z. Полученная таким образом оптическая система создает два изображения источника света S, волновые поля которых когерентны и могут создавать интерференционную картину.

Наблюдение интерференции с помощью бипризмы.

Бипризма представляет собой две тонкие призмы с общим основанием. Если угол призмы j мал, то угол преломления такой призмы q при нормальном падении луча света равен q = j×(n - 1), где n - показатель преломления призмы. Можно показать, что при малых  углах падения света на плоскую грань призмы угол преломления будет определяться тем же выражением. Если поместить точечный источник света S или источник в виде святящейся щели на некотором расстоянии от бипризмы, то возникнут два мнимых изображения этого источника S1 и S2 на расстоянии b от бипризмы (см. рис.8.6). Расстояние между S1 и S2 определяется выражением:

 

 

Полосы равного наклона.

 Если толщина пленки d постоянна а на плёнку падает непараллельный пучок света, то разность хода интерферирующих лучей определяется углом преломления b, и, следовательно, углом падения луча на пленку a. В этом случае интерференционная картина представляет собой так называемые «полосы равного наклона». При постоянной толщине пленки интерферирующие лучи параллельны и говорят, что интерференционная картина локализована на «бесконечности» или в фокальной плоскости собирающей линзы.

Условия наблюдения интерференции.

 Ранее мы рассматривали идеализированную картину интерференции строго монохроматических световых волн, распространяющихся от точечных источников. Обсудим теперь, что изменится, если учесть немонохроматичность и конечные размеры большинства реальных источников света.

а) Роль немонохроматичности источника.

Если источник S в схеме Юнга (см.рис.8.3) испускает немонохроматические волны в интервале от l до l + Dl, то интерференционная картина получится “размытой”  из-за того, что положения максимумов и минимумов для разных l будут отличаться. Критерием потери различимости  интерференционной картины для “m”– го порядка интерференции будет совпадение  максимума (m + 1)–го порядка для света с длиной волны l с максимумом m–го порядка для света с длиной волны (l + Dl):

Задачи для самостоятельного решения.

Чему равна амплитуда А колебания, являющегося суперпозицией N некогерентных колебаний одинакового направления и одинаковой амплитуды а?

Две световые волны создают в некоторой точке пространства колебания напряженности электрического поля, описываемые функциями Е1у = A×coswt и Е2у = A×cos[(wt + Dw)t], где Dw = 0,628 рад×с–1. Как ведет себя интенсивность света в этой точке?

Найти интенсивность I волны, образованной наложением двух волн одинаковой частоты, поляризованных во взаимно перпендикулярных направлениях. Значения интенсивности этих волн I1 и I2

Две плоские когерентные световые волны, угол между волновыми векторами которых a << 1, падают почти нормально на экран. Амплитуды волн одинаковы. Записать уравнения обеих волн и, показать, что расстояние между соседними максимумами на экране Δх = l /a, где l - длина волны.

Определить сдвиг Dх интерференционных максимумов 2-го порядка (m = 2) в опыте Юнга после заполнения водой пространства между экраном, на котором наблюдается интерференционная картина, и преградой со щелями. Расстояние между экраном и преградой L = 1 м, расстояние между щелями d = 1 мм, длина волны света l = 0,5 мкм, показатель преломления воды n = 4/3.

Плоская световая волна (l = 0,45 мкм) падает по нормали на преграду с двумя узкими параллельными щелями. На экране, установленном за преградой, наблюдается интерференционная картина. На какую величину Δl следует изменить длину волны падающего света, чтобы после заполнения пространства между преградой и экраном водой с n = 4/3 положение интерференционных полос не изменилось?

Плосковыпуклая стеклянная линза, соприкасающаяся выпуклой поверхностью со стеклянной пластинкой, освещается монохроматическим светом. Наблюдение ведется в отраженном свете. Радиусы двух соседних темных колец равны соответственно r1 = 4,0 мм и r2 = 4,4 мм. Радиус кривизны линзы R = 6,4 м. Найти порядковые номера колец и длину волны падающего света.

Плосковыпуклая стеклянная линза, соприкасающаяся выпуклой поверхностью со стеклянной пластинкой, освещается монохроматическим светом. Найти расстояние между 3-м и 16-м темными кольцами Ньютона, если расстояние между 2-м и 20-м темными кольцами равно 4,8 мм. Наблюдение ведется в отраженном свете.

Электротехника

На главную