Курсовая на вычисление интеграла Формула Тейлора для ФНП Производная сложной ФНП Интегрирование функций нескольких переменных Геометрические свойства интеграла ФНП Типовые задачи Вычислить интеграл Вычислить момент инерции

Математика примеры решения задач контрольной работы

Постоянные и переменные величины. Определение функции. Область определения функции; способы ее задания. Графическое изображение функции. Основные сведения из классификации функций. Числовые последовательности, их сходимость. Предел числовой последовательности. Теорема о существовании предела монотонной ограниченной последовательности (формулировка).

Интегрирование функций нескольких переменных

ФНП   рассматривается на некотором множестве , , . Пусть  – ограниченное, связное и замкнутое множество точек из ; впредь для краткости такое множество  будем называть фигурой . Интеграл ФНП по фигуре  строится в зависимости от количества независимых переменных ФНП и структуры (вида) фигуры . Так, например, в школьном курсе математики содержится первоначальное понятие определенного интеграла  функции , , . Здесь функция имеет одну независимую переменную, фигура  – отрезок.

Для функции двух переменных , очевидно, интеграл можно строить на дуге  или на плоской области , , . Функция трех переменных может рассматриваться на дуге ,
на части криволинейной (может быть и прямолинейной) поверхности , на "теле" , здесь , ,  – подмножества  и т.д.

Перечисленные множества (фигуры) различаются размерностью. Под словами размерность фигуры понимаем количество координат (чисел), необходимых для задания точки на фигуре.
Отрезок , дуга  в  или в  имеют размерность  
(одноразмерные фигуры); плоская область ,  и часть
поверхности ,  – двухразмерные фигуры; "тело"  – трехразмерная фигура.

Перечисленные множества (фигуры) различаются размерностью. Под словами размерность фигуры понимаем количество координат (чисел), необходимых для задания точки на фигуре.
Отрезок , дуга  в  или в  имеют размерность  
(одноразмерные фигуры); плоская область ,  и часть
поверхности ,  – двухразмерные фигуры; "тело"  – трехразмерная фигура. Со скидкой предлагаем купить корочку диплома здесь для ваc совсем недорого.

С размерностью фигуры связано интуитивно понимаемое понятие мера фигуры (сокр. ). Теория меры множества включает понятия: "спрямляемость" дуги", "квадрируемость" области,
"кубируемость" тела, устанавливая, в частности, необходимые и
достаточные условия их существования.

Сведем в таблицу предлагаемые термины для лучшего запоминания.

,

Фигура ,

Размерность фигуры ,

Мера
фигуры ,

Отрезок

, одноразмерная

Длина

Дуга

, одно-
размерная

Длина

Плоская

область

двухразмерная

Площадь

Часть

поверхности

двухразмерная

Площадь

 Тело

трехразмерная

Объем

Понятие интеграла ФНП Для построения интеграла ФНП  по фигуре , , используется следующая процедура построения интегральной суммы и переход к пределу. В зависимости от числа независимых переменных функции, размерности и меры фигуры интеграл  имеет различное представление, интерпретацию и способ счета.

Теорема необходимое условие существования определенного интеграла

Пусть , ,  – множество точек из , т.е. . Построить схематично график функции  на множестве : Для функции  представить на плоскости  множество точек  ее существования; указать свойства этого множества.

Понятие предела функции многих переменных (сокр. ФНП) вводится в предельной точке области определения функции.

Иногда удобно использовать переход от переменных  и  к полярным координатам. В частности, условие  (одновременно и независимо друг от друга) преобразуется в условие  при всяком  (независимо от ; сразу для всех ).

Многие теоремы о пределах, рассмотренные подробно для функции одной переменной (сокр. ФОП), могут быть перефразированы и доказаны для ФНП. Это прежде всего теорема об единственности предела (конечного), теорема о локальной ограниченности функции, имеющей конечный предел при , теорема "об арифметике" функций, имеющих конечные пределы при  и т.д. Приемы вычисления предела ФОП также могут быть использованы для ФНП.

Показать, что функция   непрерывна в точке   по каждой координате  и , но не является непрерывной в точке  по совокупности переменных.

Пусть , , . Частные производные первого порядка функции  вводятся соответственно соотношениям

Записать уравнение касательной плоскости к поверхности  в точке .

Некоторые свойства интеграла ФНП

Дифференциал функции; его геометрический смысл. Свойства дифференциала. Применение дифференциала в приближенных вычислениях. Применение производной к вычислению пределов (правило Лопиталя). Теоремы Ролля, Лагранжа. Применение производной к исследованию функций. Экстремумы функции. Нахождение наибольшего и наименьшего значений функции на интервале.
Со скидкой предлагаем купить корочку диплома здесь для ваc совсем недорого. Математика примеры решения задач контрольной, курсовой, типовой работы