Курсовая на вычисление интеграла Формула Тейлора для ФНП Производная сложной ФНП Интегрирование функций нескольких переменных Геометрические свойства интеграла ФНП Типовые задачи Вычислить интеграл Вычислить момент инерции

Математика примеры решения задач контрольной работы

Постоянные и переменные величины. Определение функции. Область определения функции; способы ее задания. Графическое изображение функции. Основные сведения из классификации функций. Числовые последовательности, их сходимость. Предел числовой последовательности. Теорема о существовании предела монотонной ограниченной последовательности (формулировка).

Геометрические свойства интеграла ФНП

Возможное геометрическое представление интегральной суммы  функции  на , а затем и интеграла  определяют геометрические свойства интеграла и перечень некоторых возможных задач, решаемых с помощью интеграла.

1. Площадь плоской фигуры

а) Пусть на плоскости  задана криволинейная трапеция
(см. ранее в п. 2.2). Тогда ее площадь можно вычислить с помощью определенного интеграла , здесь  на .

Если фигура есть комбинация криволинейных трапеций, то ее площадь находится через соответствующие операции над площадями составляющих криволинейных трапеций. В частности, при нахождении площади фигуры , заданной неравенствами  (см. рисунок), можно применить формулу

.

Для понимания формулы достаточно провести параллельный перенос оси   на  с тем, чтобы кривые  и  были расположены выше оси.
И тогда площадь заданной фигуры находится через площадь криволинейной трапеции, т.е.

.

Иногда область  удобнее проектировать на ось  и задать неравенствами  (см. рисунок). В этом случае площадь фигуры  считается по формуле .

б) Площадь плоской фигуры  можно вычислить с помощью двойного интеграла:  (при  на  ), т.е. .

2. Длина дуги считается с помощью криволинейного интеграла

.

Если дуга задана параметрически  , то , поэтому  переходит в  для дифференцируемых на  функций , ,  и поэтому в указанном случае

.

Заметим, что если дуга плоская, например  то  ( – параметр) и длина дуги считается по
формуле

.

Площадь части криволинейной поверхности  считается с помощью поверхностного интеграла

Некоторые механические приложения интеграла ФНП Масса фигуры (отрезка, дуги, плоской фигуры, части криволинейной поверхности, тела)

Вычисление интеграла  рассмотрим подробно в зависимости от  и .

Для подынтегральной функции  определенный интеграл с переменным верхним пределом определяет
первообразную на .

Дифференциал функции; его геометрический смысл. Свойства дифференциала. Применение дифференциала в приближенных вычислениях. Применение производной к вычислению пределов (правило Лопиталя). Теоремы Ролля, Лагранжа. Применение производной к исследованию функций. Экстремумы функции. Нахождение наибольшего и наименьшего значений функции на интервале.
Математика примеры решения задач контрольной, курсовой, типовой работы