Курсовая на вычисление интеграла Формула Тейлора для ФНП Производная сложной ФНП Интегрирование функций нескольких переменных Геометрические свойства интеграла ФНП Типовые задачи Вычислить интеграл Вычислить момент инерции

Математика примеры решения задач контрольной работы

Выпуклость и вогнутость графика функции, точки перегиба. Асимптоты кривой. Схема исследования функции и построение ее графика. Приближенное решение уравнений: графическое отделение корней методом проб; метод хорд и касательных. Метод итераций.

Вычисление интеграла ФНП.

Типовые задачи

1) Вычисление  проводится по формуле Ньютона – Лейбница, если известна какая-либо первообразная подынтегральной функции.

Если для вычисления первообразной применяется "интегрирование по частям", то эту операцию можно проводить сразу и для
определенного интеграла:

.

ПРИМЕР 1. Вычислить интеграл .

Решение.

.

Замена переменной интегрирования в определенном интеграле проводится соответственно следующей теореме.

Теорема (о замене переменной в определенном интеграле)

Пусть функция  определена и непрерывна на ;
функция ,  удовлетворяет условиям:

1)   ; причем , ;

2)   ;

3)   на , т.е. функция  обратима на  – существует обратная функция , :  на ;  на .

Тогда

,

где  – какая-либо первообразная для подынтегральной функции .

Заметим, что если  на  при выполнении остальных условий и , , то пределы интегрирования по  следует поменять местами.

Доказательство. Рассмотрим интеграл  –
интеграл с переменным верхним пределом – сложная функция от

,

т.е. действительно функция  – первообразная для , поэтому

.

Вычислить интеграл .

Вычисление площади плоской фигуры Площадь фигуры в декартовых координатах Вычислить площадь фигуры, ограниченной линиями  и . Площадь плоской фигуры в полярных координатах

Вычисление объема тела Вычислить объем цилиндрического тела, расположенного между плоскостями   и  и ограниченного поверхностью  и плоскостью .

Механические приложения Пластина имеет форму прямоугольника со сторонами длиной   и . Найти массу этой пластины, если ее плотность распределения массы в произвольной точке равна квадрату расстояния от точки до одной из вершин пластины.

Вычисление площади криволинейной поверхности ПРИМЕР. Вычислить площадь частей сферы , лежащих внутри цилиндра .

Определение функции нескольких независимых переменных. Предел и непрерывность функции нескольких переменных. Частные производные функции нескольких независимых переменных, их геометрический смысл (для случая двух независимых переменных). Частные производные высших порядков.
Математика примеры решения задач контрольной, курсовой, типовой работы