Предел функции

Физика
Решение задач

Черчение

ТОЭ
Электроника

 Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.  Если предел функции при х®+¥ или х®-¥ существует и конечен, это

значит, что у графика функции имеется горизонтальная асимптота. Например, график функции  имеет асимптоту у=0 при х®±¥, а график функции y=arctgx – асимптоту  при х®+¥ и  при х®-¥.

 Предел функции f(x) в точке a: – это (говоря упрощенно) число, к которому стремится значение функции, если ее аргумент стремится к а. Если функция непрерывна в точке а, это значит, что ее предел в этой точке равен ее значению: . Поэтому первым действием при вычислении предела функции является подстановка значения аргумента. Если при этом получилось конкретное число или бесконечность – это и есть искомый предел.

Примеры.

Даны матрицы:

1. Какого размера матрица А? Перечислите ее элементы.

Неопределенный и определенный интегралы Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания

 Решение: В данной матрице 2 строки и 3 столбца, значит, это матрица размера 2´3. Дифференцируемость ФНП

Обратная матрица. Матричные уравнения. Системы линейных алгебраических уравнений.

1. Найти координаты векторов  .

Решение: Для того, чтобы найти координаты вектора, следует из координат конца вектора (вторая указанная в его названии точка) вычесть координаты начала (первая точка):

Даны точки: А(1;0), В(3;1), С(-2;5)

1. Написать уравнение прямой (АВ) и найти точки пересечения этой прямой с осями координа

Решение: Составим уравнение прямой с начальной точкой А(1;0) и направляющим вектором :

(АВ): .

Приведем уравнение к общему виду:

(АВ): x-2y-1=0

Предел последовательности

Задания для подготовки к практическому занятию Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…). Таким образом, последовательность – это функция, заданная на множестве натуральных чисел. Задают последовательность чаще всего формулой общего члена.

Понятие предела последовательности поясним пока на простых примерах: Определение производной функции, ее геометрический и физический смысл, ее свойства подробно описаны в §13 лекций. Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x). При этом следует помнить, что .

Дифференциал функции Пример. Дана функция . Найти ее первый дифференциал dy Решение: Воспользуемся формулой первого дифференциала.

. Таким образом, . >

Неопределенный интеграл. Табличное интегрирование.

 

Замена переменной; интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций

С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить. Способов такого преобразования, как и способов замены переменной в тригонометрическом интеграле обычно много, но для некоторых типов интегралов известны стандартные действия, приводящие к ответу наиболее коротким путем. Их описанию и посвящен рассматриваемый параграф лекций.

Интегрирование простейших иррациональных выражений

Вычислить определенные интегралы:

Двойной интеграл Точно так же можно интегрировать функцию по у в пределах, зависящих от х (или просто постоянных). Полученную при этом функцию можно далее интегрировать по второй переменной, в постоянных пределах:

ОДУ первого порядка. Уравнения с разделяющимися переменными и однородные уравнения

Линейные уравнения и уравнения Бернулли. Уравнения в полных дифференциалах.

Линейные уравнения с постоянными коэффициентами Для данных неоднородных линейных уравнений выписать соответствующие однородные линейные уравнения и составить характеристические уравнения:

 Для каждого из данных неоднородных линейных уравнений с постоянными коэффициентами выпишите правую часть и определите, является ли она функцией специального вида. Если да, выпишите значения параметров a,b, k:

Задание 1.

1) Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

2) Найти: а). ; б). ; в).

Решение.

1) Изобразим числа на комплексной плоскости. При этом числу  будет соответствовать точка , числу  - точка .

Задание 3. Указать область дифференцируемости функции  и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Решение. Выделим действительную и мнимую часть функции : Неравенство  определяет точки, лежащие на лемнискате и внутри ее. Неравенство  определяет точки, лежащие правее прямой Искомым множеством является пересечение этих областей:

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости . Решение. Для того чтобы найти образ области  при отображении , нужно найти образ границы  области , затем взять произвольную точку из области  и найти ее образ.

 

Полученное разложение содержит и правильную, и главную часть ряда Лорана.

Главная часть ряда Лорана содержит конечное число слагаемых, значит  - полюс. Порядок высшей отрицательной степени  определяет порядок полюса. Следовательно,  - полюс кратности 2. Вычет найдем, используя формулу , тогда .

Задание 11. Вычислить интегралы от функции комплексного переменного: Так как подынтегральная функция  аналитична всюду, то можно воспользоваться формулой Ньютона-Лейбница: =.

Задание 12. Вычислить интегралы, используя теорему Коши о вычетах: Решение. Подынтегральная функция имеет внутри контура интегрирования две особые точки  и . Тогда .

 

Сформулируем правило, позволяющее вычислить рассматриваемый несобственный интеграл с помощью теории функций комплексного переменного:

ЗАДАНИЕ 5. Изменить порядок интегрирования в интеграле Изобразим область интегрирования на чертеже. Найдем точки пересечения параболы  и прямой :  т.е. точкам пересечения кривых соответствуют точки, для которых  и . Вертикальной штриховкой покажем порядок интегрирования: сначала по y при фиксированном  x. Сменим штриховку на горизонтальную. Из рисунка видно, что данная область является -трапецией.

Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

Нетрудно убедиться, что и здесь, как и в предыдущем случае, повторный интеграл, записанный в декартовой системе координат, при вычислении требует значительных усилий; поэтому и в этом случае перейдем к цилиндрической системе координат

Чтобы тройной интеграл записать в виде повторного, перейдем в уравнениях ограничивающих тело поверхностей к сферическим координатам.

 Так как подынтегральная функция представляет собой произведение функций, каждая из которых зависит только от одной переменной, а пределы интегрирования постоянны, то повторный интеграл представляет собой просто произведение трех интегралов

Найти массу пластинки  Очевидно, что область () не является ни -, ни - трапецией; при вычислении двойного интеграла в декартовой системе координат область () пришлось бы разбить на три области. Как для областей, заключенных между концентрическими окружностями с центром в начале координат “родной” является полярная система координат, так и для эллиптических колец “своей “ является эллиптическая система координат (обобщенная полярная система координат)

Цилиндрический брус проектируется на плоскость  в криволинейную трапецию (D): 0 x 1, 0 y . Преобразуем тройной интеграл в повторный и вычислим его:

Вычислить криволинейный интеграл Рассматривается случай параметрического задания кривой  (). Массу плоской кривой можно вычислить с помощью криволинейного интеграла первого рода: . Для вычисления его нужно свести к определенному интегралу от функции одной переменной по отрезку по формуле: .

РЕШЕНИЕ. Работа силы по перемещению материальной точки единичной массы есть линейный интеграл вдоль дуги  от точки  до точки 

Последний интеграл есть криволинейный интеграл второго рода по пространственной кривой . Его вычисление сводится к вычислению определенного интеграла, для чего кривую  надо представить в параметрической форме (условием задачи кривая  задана в виде линии пересечения поверхности кругового цилиндра  с плоскостью , см. рис.81).

Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .

Убедиться в потенциальности поля вектора

В нашем случае x sin=0 произведение бесконечно малой на ограниченную поэтому  arctg(x sin) ~ (x sin) Применяя полученные результаты, вычисляем предел

Другой подход к решению задачи  использование логарифмической производной. Приведём и такое решение: ln y = ln2cosx· ln(sin x3); дифференцируем обе части равенства по переменной x:

Составить уравнения касательной и нормали к кривой в данной точке, вычислить в этой точке y¢¢xx:

Вычислить пределы с помощью правила Лопиталя:

ЗАДАНИЕ 21. Многочлен f(x)=3x4  22x3 + 60x2  73x + 39 по степеням x представить в виде многочлена по степеням (x  2). Известно, что для дифференцируемой 4 раза в точке x0 функции f(x) существует лишь один многочлен, приближающий её в окрестности этой точки с точностью до слагаемого о((x  x0)4)  это многочлен Тейлора обозначим его : f(x) = + о((x  x0)4). В случае, когда сама f(x) является многочленом 4-й степени, получим f(x) = , то есть о((x  x0)4) = 0. Поэтому коэффициенты искомого многочлена можно найти с помощью формулы Тейлора

Исследовать поведение функции в окрестности точки с помощью формулы Тейлора: f(x)=  ln2x, x0 =1.

Найти асимптоты и построить эскизы графиков функций:

На главную