Предел функции Интегрирование

Алгоритмы маршрутизации
Мультикомпьютеры
Выбор топологии вычислительной системы
Сбои в персональных компьютерах
Запись на диски и в файлы
Процессы и ресурсы
Балансировка вычислительной
нагрузки процессоров
Математическая статистика
Предел функции Интегрирование
Решение интегралов
Вычисление двойных и тройных интегралов
Курсовая на вычисление интеграла
Формула Тейлора для ФНП
Производная сложной ФНП
Интегрирование функций нескольких переменных
Геометрические свойства интеграла ФНП
Типовые задачи
Вычислить интеграл
Вычислить момент инерции
Вычислить повторный интеграл
Решения задачи Коши
Метод Эйлера
Оформление сборочного чертежа
Изображения
Способы преобразования чертежа
 Нанесение размеров
Аксонометрические проекции
Резьбы, резьбовые изделия
Разъемные соединения
Неразъемные соединения
Шероховатость поверхности
Сборочный чертеж
Деталирование чертежей
Решение задач по физике примеры
Электротехника
Оптика
Билеты к экзамену по физике
Теория электромагнитного поля
Элементы электрических цепей
Промышленная электроника
Цифровая электроника
Теоретические основы электротехники
Сопротивление материалов
Метод сечений
Перемещения и деформации
Общие принципы расчета конструкции
Моменты инерции сечения
Кручение бруса
Определение опорных реакций
Момент сопротивления
Метод начальных параметров
Косой изгиб
Внецентренное растяжение и сжатие
Теории прочности
Метод сил
Расчет на усталостную прочность
Задача Эйлера
Формула Ясинского
Определение прогиба и напряжений
Запас усталостной прочности
Основы теории упругости
Основы теории пластичности
Рождение абстрактного искусства
Художники эпохи Просвещения
Теоретическая механика

 Предел функции f(x) на бесконечности:  вычисляют так же, как предел последовательности, учитывая только, что х может стремиться к +¥ или к -¥.  Если предел функции при х®+¥ или х®-¥ существует и конечен, это

значит, что у графика функции имеется горизонтальная асимптота. Например, график функции  имеет асимптоту у=0 при х®±¥, а график функции y=arctgx – асимптоту  при х®+¥ и  при х®-¥.

  Предел функции f(x) в точке a: – это (говоря упрощенно) число, к которому стремится значение функции, если ее аргумент стремится к а. Если функция непрерывна в точке а, это значит, что ее предел в этой точке равен ее значению: . Поэтому первым действием при вычислении предела функции является подстановка значения аргумента. Если при этом получилось конкретное число или бесконечность – это и есть искомый предел.

Примеры.

Даны матрицы:

1. Какого размера матрица А? Перечислите ее элементы.

Неопределенный и определенный интегралы Решение задач на вычисление интеграла Математика лекции, задачи. Примеры выполнения курсового и типового задания

 Решение: В данной матрице 2 строки и 3 столбца, значит, это матрица размера 2´3. Дифференцируемость ФНП

Обратная матрица. Матричные уравнения. Системы линейных алгебраических уравнений.

1. Найти координаты векторов  .

Решение: Для того, чтобы найти координаты вектора, следует из координат конца вектора (вторая указанная в его названии точка) вычесть координаты начала (первая точка):

Даны точки: А(1;0), В(3;1), С(-2;5)

1. Написать уравнение прямой (АВ) и найти точки пересечения этой прямой с осями координа

Решение: Составим уравнение прямой с начальной точкой А(1;0) и направляющим вектором :

(АВ): .

Приведем уравнение к общему виду:

(АВ):  x-2y-1=0

Предел последовательности

Задания для подготовки к практическому занятию Напомним для начала, что числовая последовательность – это бесконечный упорядоченный набор чисел. Члены последовательности можно пронумеровать, так что каждому натуральному значению n (1,2,3,…) соответствует член последовательности (а1, а2, а3,…). Таким образом, последовательность – это функция, заданная на множестве натуральных чисел. Задают последовательность чаще всего формулой общего члена.

Понятие предела последовательности поясним пока на простых примерах: Определение производной функции, ее геометрический и физический смысл, ее свойства подробно описаны в §13 лекций. Займемся непосредственно вычислением производных, для чего используем сводную таблицу формул дифференцирования. Вторая часть таблицы, в которой приведены производные основных элементарных функций, записана для сложных функций вида f(u), u=u(x). При этом следует помнить, что .

Дифференциал функции Пример. Дана функция . Найти ее первый дифференциал dy Решение: Воспользуемся формулой первого дифференциала.

. Таким образом, . >

Неопределенный интеграл. Табличное интегрирование.

 

Замена переменной; интегрирование по частям

Интегрирование выражений, содержащих квадратный трехчлен

Интегрирование рациональных функций

С тригонометрическими интегралами мы уже встречались ранее. Их особенностью, пожалуй, можно считать обилие тригонометрических формул, позволяющих преобразовывать подынтегральное выражение, что часто позволяет его упростить. Способов такого преобразования, как и способов замены переменной в тригонометрическом интеграле обычно много, но для некоторых типов интегралов известны стандартные действия, приводящие к ответу наиболее коротким путем. Их описанию и посвящен рассматриваемый параграф лекций.

Интегрирование простейших иррациональных выражений

Вычислить определенные интегралы:

Двойной интеграл Точно так же можно интегрировать функцию по у в пределах, зависящих от х (или просто постоянных). Полученную при этом функцию можно далее интегрировать по второй переменной, в постоянных пределах:

ОДУ первого порядка. Уравнения с разделяющимися переменными и однородные уравнения

Линейные уравнения и уравнения Бернулли. Уравнения в полных дифференциалах.

Линейные уравнения с постоянными коэффициентами Для данных неоднородных линейных уравнений выписать соответствующие однородные линейные уравнения и составить характеристические уравнения:

  Для каждого из данных неоднородных линейных уравнений с постоянными коэффициентами выпишите правую часть и определите, является ли она функцией специального вида. Если да, выпишите значения параметров a,b, k:

Задание 1.

1) Найти модуль и аргумент чисел  и . Изобразить числа на комплексной плоскости. Представить числа в тригонометрической и показательной форме.

2) Найти: а). ; б). ; в).

Решение.

1) Изобразим числа на комплексной плоскости. При этом числу  будет соответствовать точка , числу  - точка .

Задание 3. Указать область дифференцируемости функции  и вычислить производную. Выделить действительную и мнимую часть полученной производной.

Решение. Выделим действительную и мнимую часть функции : Неравенство  определяет точки, лежащие на лемнискате и внутри ее. Неравенство  определяет точки, лежащие правее прямой Искомым множеством является пересечение этих областей:

Найти область плоскости , в которую отображается с помощью функции  область :  плоскости . Решение. Для того чтобы найти образ области  при отображении , нужно найти образ границы  области , затем взять произвольную точку из области  и найти ее образ.

 

Полученное разложение содержит и правильную, и главную часть ряда Лорана.

Главная часть ряда Лорана содержит конечное число слагаемых, значит  - полюс. Порядок высшей отрицательной степени  определяет порядок полюса. Следовательно,  - полюс кратности 2. Вычет найдем, используя формулу , тогда .

Задание 11. Вычислить интегралы от функции комплексного переменного: Так как подынтегральная функция  аналитична всюду, то можно воспользоваться формулой Ньютона-Лейбница: =.

Задание 12. Вычислить интегралы, используя теорему Коши о вычетах: Решение. Подынтегральная функция имеет внутри контура интегрирования две особые точки  и . Тогда .

 

Сформулируем правило, позволяющее вычислить рассматриваемый несобственный интеграл с помощью теории функций комплексного переменного:

ЗАДАНИЕ 5. Изменить порядок интегрирования в интеграле Изобразим область интегрирования на чертеже. Найдем точки пересечения параболы   и прямой :  т.е. точкам пересечения кривых соответствуют точки, для которых  и . Вертикальной штриховкой покажем порядок интегрирования: сначала по y при фиксированном  x. Сменим штриховку на горизонтальную. Из рисунка видно, что данная область является  -трапецией.

Найти объем тела, ограниченного указанными поверхностями. Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

Нетрудно убедиться, что и здесь, как и в предыдущем случае, повторный интеграл, записанный в декартовой системе координат, при вычислении требует значительных усилий; поэтому и в этом случае перейдем к цилиндрической системе координат

Чтобы тройной интеграл записать в виде повторного, перейдем в уравнениях ограничивающих тело поверхностей к сферическим координатам.

 Так как подынтегральная функция представляет собой произведение функций, каждая из которых зависит только от одной переменной, а пределы интегрирования постоянны, то повторный интеграл представляет собой просто произведение трех интегралов

Найти массу пластинки  Очевидно, что область () не является ни -, ни - трапецией; при вычислении двойного интеграла в декартовой системе координат область () пришлось бы разбить на три области. Как для областей, заключенных между концентрическими окружностями с центром в начале координат “родной” является полярная система координат, так и для эллиптических колец “своей “ является эллиптическая система координат (обобщенная полярная система координат)

Цилиндрический брус проектируется на плоскость  в криволинейную трапецию (D): 0 x 1, 0 y . Преобразуем тройной интеграл в повторный и вычислим его:

Вычислить криволинейный интеграл Рассматривается случай параметрического задания кривой  (). Массу плоской кривой можно вычислить с помощью криволинейного интеграла первого рода: . Для вычисления его нужно свести к определенному интегралу от функции одной переменной по отрезку по формуле: .

РЕШЕНИЕ. Работа силы по перемещению материальной точки единичной массы есть линейный интеграл вдоль дуги  от точки  до точки 

Последний интеграл есть криволинейный интеграл второго рода по пространственной кривой . Его вычисление сводится к вычислению определенного интеграла, для чего кривую  надо представить в параметрической форме (условием задачи кривая  задана в виде линии пересечения поверхности кругового цилиндра  с плоскостью , см. рис.81).

Вычислить расходимость (дивергенцию) и вихрь (ротор) в произвольной точке , а также найти уравнения векторных линий поля градиентов скалярного поля .

Убедиться в потенциальности поля вектора

В нашем случае x sin=0 произведение бесконечно малой на ограниченную поэтому arctg(x sin) ~ (x sin) Применяя полученные результаты, вычисляем предел

Другой подход к решению задачи  использование логарифмической производной. Приведём и такое решение: ln y = ln2cosx· ln(sin x3); дифференцируем обе части равенства по переменной x:

Составить уравнения касательной и нормали к кривой в данной точке, вычислить в этой точке y¢¢xx:

Вычислить пределы с помощью правила Лопиталя:

ЗАДАНИЕ 21. Многочлен f(x)=3x4  22x3 + 60x2  73x + 39 по степеням x представить в виде многочлена по степеням (x  2). Известно, что для дифференцируемой 4 раза в точке x0 функции f(x) существует лишь один многочлен, приближающий её в окрестности этой точки с точностью до слагаемого о((x  x0)4)  это многочлен Тейлора обозначим его : f(x) = + о((x  x0)4). В случае, когда сама f(x) является многочленом 4-й степени, получим f(x) = , то есть о((x  x0)4) = 0. Поэтому коэффициенты искомого многочлена можно найти с помощью формулы Тейлора

Исследовать поведение функции в окрестности точки с помощью формулы Тейлора: f(x)=  ln2x, x0 =1.

Найти асимптоты и построить эскизы графиков функций:

[an error occurred while processing this directive]