Вычисление двойных и тройных интегралов

Алгоритмы маршрутизации
Мультикомпьютеры
Выбор топологии вычислительной системы
Сбои в персональных компьютерах
Запись на диски и в файлы
Процессы и ресурсы
Балансировка вычислительной
нагрузки процессоров
Математическая статистика
Предел функции Интегрирование
Решение интегралов
Вычисление двойных и тройных интегралов
Курсовая на вычисление интеграла
Формула Тейлора для ФНП
Производная сложной ФНП
Интегрирование функций нескольких переменных
Геометрические свойства интеграла ФНП
Типовые задачи
Вычислить интеграл
Вычислить момент инерции
Вычислить повторный интеграл
Решения задачи Коши
Метод Эйлера
Оформление сборочного чертежа
Изображения
Способы преобразования чертежа
 Нанесение размеров
Аксонометрические проекции
Резьбы, резьбовые изделия
Разъемные соединения
Неразъемные соединения
Шероховатость поверхности
Сборочный чертеж
Деталирование чертежей
Решение задач по физике примеры
Электротехника
Оптика
Билеты к экзамену по физике
Теория электромагнитного поля
Элементы электрических цепей
Промышленная электроника
Цифровая электроника
Теоретические основы электротехники
Сопротивление материалов
Метод сечений
Перемещения и деформации
Общие принципы расчета конструкции
Моменты инерции сечения
Кручение бруса
Определение опорных реакций
Момент сопротивления
Метод начальных параметров
Косой изгиб
Внецентренное растяжение и сжатие
Теории прочности
Метод сил
Расчет на усталостную прочность
Задача Эйлера
Формула Ясинского
Определение прогиба и напряжений
Запас усталостной прочности
Основы теории упругости
Основы теории пластичности
Рождение абстрактного искусства
Художники эпохи Просвещения
Теоретическая механика

Масса неоднородного тела. Тройной интеграл. Рассмотрим тело, занимающее пространственную область , и предположим, что плотность распределения массы в этом теле является непрерывной функцией координат точек тела:

Декартовы координаты.

Установим теперь правило для вычисления    такого интеграла. Если же в общем случае менять порядок интегрирования ( т.е., скажем, интегрировать сначала по направлению оси Oy, а затем по области плоскости Oxz), то это приведёт к изменению порядка интегрирования в тройном интеграле и к изменению пределов интегрирования по каждой переменной.

Вычислим тройной интеграл Цилиндрические координаты.

Сферические координаты.

Пример. Найдем центр тяжести однородного полушара

Если тело неоднородное, то в каждой формуле под знаком интеграла будет находиться дополнительный множитель  - плотность тела в точке P.

Объём цилиндрического тела. Двойной интеграл. Пусть в некоторой замкнутой области D плоскости хОу определена ограниченная функция z = f(x,у), причём f(x,y)>0. К определению двойного интеграла приходим, вычисляя объём фигуры, основание которой - область D; сверху фигура ограничена поверхностью, уравнение которой z=f(x,y) боковая поверхность - цилиндрическая, образованная прохождением прямой, параллельной оси Oz вдоль границы L области D. Такая фигура называется цилиндрическим телом (рисунок 1).

Если m, М - наименьшее и наибольшее значения непрерывной функции f(x,y) в области D, то справедливо двойное неравенство (оценка двойного интеграла):

Вычисление двойного интеграла в декартовых координатах

Изменим порядок интегрирования. При этом нижняя граница области D задана двумя аналитическими выражениями . В этом случае область D нужно разбить на две области Dl, D2 с помощью прямой, проходящей по оси Оу.

Двойной интеграл в полярных координатах Если область интегрирования D - круг или часть круга, то обычно двойной интеграл вычислить легче, если перейти к полярным координатам. Полярный полюс помещается в начало декартовых координат, полярная ось направлена вдоль оси Ох. Формулы перехода к полярным координатам: Двойные интегралы в полярных координатах выражаются через двукратные интегралы вида

Приложения тройного интеграла С помощью тройного интеграла наряду с другими величинами можно вычислить: объём области V по формуле массу m тела V переменной плотностью

Вычисление тройного интеграла в декартовых и других координатах Тройной интеграл в декартовых координатах Вычисление тройного интеграла сводится к последовательному вычислению трёх однократных интегралов. При этом дифференциал  объёма равен произведению дифференциалов независимых переменных dv = dxdydz. Область интегрирования называется правильной, если прямая, проходящая через произвольную внутреннюю точку области интегрирования параллельно каждой оси координат пересекает границу области в двух точках. В правильной области можно выбрать любую последовательность интегрирования по переменным х, у, z. Вычисление начинается с построения рисунка области интегрирования по заданным уравнениям границ области. Выбрав первую переменную интегрирования, нужно построить проекцию области интегрирования на плоскость двух других переменных. Например, если первое интегрирование производится по переменной z, то будет нужна проекция области на плоскость хОу.

Тройной интеграл в сферических координатах Основные свойства и приложения криволинейного интеграла первого рода . Это свойство характерно только для криволинейного интеграла 1-го рода, ввиду того, что dl > 0 при любом движении вдоль кривой MN. С помощью криволинейных интегралов 1-го рода можно вычислять следующие геометрические и физические величины:

Вычисление криволинейных интегралов 1-го рода Пусть по кривой MN, расположенной в плоскости хОу, движется материальная точка Р (х, у ), к которой приложена сила F , изменяющаяся по величине и направлению при перемещении точки.

Физическая задача вычисления работы силы  при перемещении точки Р из положения М в положение N приводит к понятию криволинейного интеграла второго рода. Для этого кривая MN разбивается на п произвольных частей точками М=M1,M2,M3,…Mn=N

Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути интегрирования Пусть D - некоторая замкнутая область на плоскости хОу, ограниченная контуром L. На ней заданы функции Р = Р(х,у) и Q = Q(x,y), непрерывные на D вместе со своими частными производными первого порядка. Формула Грина связывает криволинейный интеграл второго рода по L с двойным интегралом по области D: С помощью формулы Грина значение криволинейного интеграла по замкнутому контуру можно найти, вычислив двойной интеграл.

Поверхностный интеграл первого рода Пусть f(x,y,z) - функция, непрерывная на гладкой поверхности S. (Поверхность называется гладкой, если в каждой её точке существует касательная плоскость, непрерывно изменяющаяся вдоль поверхности).

Поверхностный интеграл второго рода К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости.

Область интегрирования D задана уравнениями границ. По заданным уравнениям нужно нарисовать кривые или прямые линии, которые образуют замкнутую область D. Затем нужно выбрать порядок интегрирования и применить формулу (8) или (9), как это выполнено в примере 1. Достаточно выполнить интегрирование только по одной из двух формул.

Вычислить с помощью тройного интеграла обьём тела, ограниченного указанными поверхностями. Сделать рисунок данного тела и его проекции на плоскость хОу

Если уравнение поверхности не содержит одну из трёх независимых переменных, это является признаком того, что поверхность - цилиндрическая, с образующей, параллельной оси отсутствующей переменной.

Заданное уравнение при этом -уравнение направляющей линии.

Уравнение сферы радиусом R с центром в начале координат имеет вид: РЕШЕНИЕ Интеграл по ломанной линии MNV вычисляем суммой двух интегралов: по отрезку прямой MN и отрезку NV. Определим уравнение прямой интегрирования MN, как уравнение прямой, проходящей через две точки

Функция нескольких переменных и ее частные производные Определение функции нескольких переменных

Полное приращение и полный дифференциал ФНП Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Частные производные ФНП, заданной неявно

Экстремумы ФНП Локальные максимумы и минимумы ФНП Необходимое условие не является достаточным. Точки из ООФ, в которых необходимое условие выполнено, называются критическими точками функции, или точками, подозрительными на экстремум.

Касательная плоскость и нормаль к поверхности

Функции комплексной переменной Определение и свойства функции комплексной переменной

Дифференцирование ФКП. Аналитические ФКП Производной от функции комплексной переменной w = f (z) в точке z0 называется предел:

Здесь внутренний интеграл вычисляется по переменной x в предположении, что y = const; результатом вычисления внутреннего интеграла является некоторая функция от y, которая затем интегрируется в постоянных пределах.

Если область D – правильная в обоих направлениях, то повторный интеграл не зависит от порядка интегрирования, и для вычисления двойного интеграла можно использовать любой из двух порядков интегрирования:

Все перечисленные интегралы можно вычислить в декартовых либо в полярных координатах, переходя к соответствующему повторному интегралу.

Тройной интеграл Некоторые приложения тройных интегралов Если  – это плотность неоднородного материала (т.е. масса единицы объема), из которого изготовлено тело, то при помощи тройного интеграла можно вычислить массу тела, его статические моменты относительно координатных плоскостей и другие величины. Например, формула для вычисления массы тела имеет вид:

Криволинейный интеграл II рода (по координатам) где BC – это дуга пространственной линии от точки B до точки C с указанным на ней направлением,  P (x, y, z),  Q (x, y, z), R (x, y, z) – некоторые функции, заданные во всех точках дуги BC.

Если каждому значению параметра t из некоторого промежутка  ставится в соответствие по некоторому правилу определенный вектор, то говорят, что задана вектор-функция скалярного аргумента t: .

Векторное поле Поток векторного поля через поверхность

Формула Остроградского-Гаусса. Дивергенция Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью:

Соленоидальное векторное поле Векторное поле  называется соленоидальным, если существует такое векторное поле , для которого поле является полем его роторов: .

Задача. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0. Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

Задача 4. Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

Задача 5. Поверхность σ задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2. Решение. Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6). Найдем частные производные функции

Задача 6. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Требуется: найти уравнения линий уровня поля; найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

3) построить в системе координат xОy 4-5 линий уровня, в том числе линию уровня, проходящую через точку M0, изобразить вектор  на этом чертеже.

Задача 7. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i. Требуется: представить функцию в виде w = u(x, y) +iv(x, y), выделив ее действительную и мнимую части; проверить, является ли функция w аналитической;

Решение примерного варианта контрольной работы №2 Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

Задача 4.  Задан радиус-вектор движущейся точки: . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Задача 6. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Математика , физика курсовая, информационные системы. Машиностроительное черчение