Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Предел функции Интегрирование Двойной интеграл Уравнения в полных дифференциалах. Найти объем тела Вычислить криволинейный интеграл Вычислить расходимость (дивергенцию) и вихрь (ротор)

Решение задач типового расчета по математике

Геометрический смысл производной Рассмотрим график функции y = f(x), определенной и непрерывной на (a,b). Зафиксируем произвольную точку x на (a,b), и зададим приращение D x 0, причем x+D x О (a,b). Пусть точки M,P - точки на графике f(x), абсциссы которых равны x, x+D x (рис.21). Координаты точек M и P имеют вид M(x,f(x)), P(x+D x,f(x+D x). Прямую, проходящую через точки M, P графика функции f(x) будем называть секущей. Обозначим угол наклона секущей MP к оси ОX через f (D x).

Двойной интеграл

Задания для подготовки к практическому занятию

Прочитайте § 23 лекций и предложенные рассуждения. Ответьте на вопросы и решите задачи

Отметим здесь, что при интегрировании функции z(x; y) по переменной х, так же как и при дифференцировании, считают y=const и пользуются обычными правилами вычисления интеграла. При этом пределы интегрирования могут зависеть от у (но не от х).

Точно так же можно интегрировать функцию по у в пределах, зависящих от х (или просто постоянных).

Примеры

1.

.

2.

Полученную при этом функцию можно далее интегрировать по второй переменной, в постоянных пределах:

3.

Интеграл, вычисленный в последнем примере, называется повторным интегралом и записывать его принято так:

Вопросы и задачи

п1. Вычислить интегралы, если возможно:

 а) ; б) ; в)

п2. Вычислить повторные интегралы:

 а) ; б)

Задачи к практическому занятию

Вычислить двойной интеграл по области, ограниченной указанными линиями:

1.;  2.;

3.;  4.

Изменить порядок интегрирования:

5.;  6.;

7.;  8.

Вычислить:

9.

10.

11.

12.

Правила дифференцирования

Приведем основные правила для нахождения производной:
  1. Производная постоянной равна нулю, то есть c' = 0.
  2. Производная алгебраической суммы конечного числа дифференцируемых функций равна такой же сумме производных этих функций, то есть
    u(x)± v(x))' = u'(x)± v'(x).
  3. Производная произведения двух дифференцируемых функций равна произведению производной первого сомножителя на второй плюс произведение первого сомножителя на производную второго, то есть
    (u(x)v(x))' = u'(x)v(x)+u(x)v'(x).

пластиковые окна г, королев, акция.
Двойной интеграл в полярных координатах Математика решение задач