Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Решение интегралов Алгебра матриц Площадь плоской криволинейной трапеции. Тройной интеграл в цилиндрических и сферических координатах Вычисление двойного интеграла в декартовых координатах Двойной интеграл в полярных координатах

Решение задач типового расчета по математике

Мощность множеств.

Как мы можем сравнить два конечных множества? Мы можем, например, сосчитать количество элементов в каждом из них и таким образом сравнить. Но можно поступить иначе, попытаться установить биекцию между элементами. Ясно, что биекцию между двумя конечными множествами можно установить только при условии что количество элементов в них одинаково. Именно второй способ годится для сравнения бесконечных множеств. Среди бесконечных множеств простейшим является множество натуральных чисел.

Двойной интеграл в полярных координатах

Если область интегрирования D - круг или часть круга, то обычно двойной интеграл вычислить легче, если перейти к полярным координатам. Полярный полюс помещается в начало декартовых координат, полярная ось направлена вдоль оси Ох. Формулы перехода к полярным координатам:

Дифференциал площади в полярных координатах равен

ds = rdrdφ

С учётом формул (10), (11) находим:

Двойные интегралы в полярных координатах выражаются через двукратные интегралы вида

Рис 6. - Область интегрирования, не содержащая начало координат

Рис 7. - Область интегрирования, содержащая начало координат

Если область D содержит начало координат (рисунок 7), то

 

Свойства предела последовательности.

Общие свойства.

Определение 29. Последовательность называется финально постоянной, если $ AО R и $ N, что для всех n>N xn = A.

Теорема 7. (свойства предела последовательности)

  1. Финально постоянная последовательность сходится.
  2. Если последовательность сходится, то предел единственен.
  3. Сходящаяся последовательность ограничена.

Вычисление длины дуги кривой Математика решение задач