Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Теория электромагнитного поля Магнитная индукция Контур с током в неоднородном магнитном поле Магнитное поле в веществе Явление электромагнитной индукции Явление самоиндукции Электромагнитные колебания

Физика курс лекций Теория электромагнитного поля

Магнитное поле движущегося заряда Каждый проводник с током создает в окру­жающем пространстве магнитное поле. Но электрический ток в любом проводнике есть движение заряженных частиц: в металлах — это движение электронов, в электролитах — ионов, в газовом раз­ряде — и ионов, и электронов. Отсюда можно заключить, что всякий движущийся заряд создает вокруг себя магнитное поле

МАГНИТНОЕ ПОЛЕ В ВЕЩЕСТВЕ

Классификация магнетиков. Магнитные свойства атомов

Магнетики – так называются вещества в магнетизме. Это связано с тем, что все без исключения вещества в той или иной степени влияют на магнитное поле, ослабляя или усиливая его.

На рис. 39 представлена схема опыта по изучению действия магнитного поля на различные вещества [7]. Сравнение показаний динамометра до и после включения постоянного тока в соленоиде указывает на три возможных типа взаимодействия.

Первый тип взаимодействия: относительно слабое втягивание магнетика в область более сильного поля. Такие вещества называются парамагнетиками. К парамагнетикам относятся, например, алюминий, платина, натрий, хлористая медь, жидкий кислород и др.

Второй тип взаимодействия: относительно слабое выталкивание магнетика в область менее интенсивного поля. Эти вещества называются диамагнетиками. К ним относятся медь, серебро, висмут, углерод, вода, жидкий азот и др.

Третий тип взаимодействия: для веществ этого класса наблюдалось втягивание в область более сильного поля, и их можно было бы, формально, отнести к первому типу взаимодействия. Однако эффект в тысячи, десятки тысяч раз превосходит силы, наблюдавшиеся для парамагнетиков и диамагнетиков. Эти вещества называются ферромагнетиками. К ним относятся, например, железо, кобальт, никель и др.

Почему же вещества по-разному взаимодействуют с магнитным полем? Естественно предположить, что то или иное взаимодействие магнетиков с магнитным полем обусловлено магнитными свойствами атомов. Еще в начале XIX столетия Ампер выдвинул гипотезу молекулярных токов, согласно которой каждому атому (молекуле) можно сопоставить некоторый круговой ток с соответствующим магнитным моментом. В современной физике магнитный момент атома рассматривается как суммарный магнитный момент, связанный с орбитальным движением электронов вокруг ядра, собственным магнитным моментом электронов и с магнитным моментом ядра:

, (3.1)

где Z – число электронов в атоме;  – суммарный магнитный момент атома; – орбитальный магнитный момент i-го электрона, обусловленный движением электрона вокруг ядра; – собственный магнитный момент i-го электрона; – суммарный магнитный момент ядра, обусловленный магнитными моментами входящих в состав ядра протонов и нейтронов.

Как показывает опыт, магнитный момент ядра мал по своей величине, и им можно пренебречь по сравнению с магнитными моментами электронов, считая, что магнитный момент атома равен векторной сумме орбитальных и собственных магнитных моментов электронов.

Рассмотрим движение электрона по круговой орбите радиуса  вокруг ядра как круговой контур с током (рис. 40). Если электрон за одну секунду делает  оборотов, то сила тока в таком контуре

где  – модуль заряда электрона;  – циклическая частота. Тогда для орбитального магнитного момента такого контура площадью  получаем

. (3.2)

Направление тока I противоположно скорости электрона  так как заряд электрона – отрицательный (рис. 40).

Здесь уместно ввести понятие гиромагнитного отношения  – отношения орбитального магнитного момента электрона  к его орбитальному моменту импульса :

. (3.3)

Момент импульса (момент количества движения) был определен в разделе «Механика» [6]:

, (3.4)

где m – масса электрона. Вектор  направлен противоположно вектору  (рис. 40).

Как видно из (3.2)–(3.4), связь между векторами  и  можно выразить в виде

, (3.5)

где гиромагнитное отношение для орбитального движения электрона

. (3.6)

Из (3.6) следует, что гиромагнитное отношение не зависит от параметров орбитального движения электрона и для всех электронов одинаково.

Электрон обладает также собственным магнитным моментом  и собственным моментом импульса . Последний называют также спином. Соответственно собственный магнитный момент называют спиновым магнитным моментом. Собственные моменты электрона имеют квантовую природу и являются такими же неотъемлемыми его характеристиками, как масса и заряд. Опыт показывает, что собственный магнитный и механический моменты электрона связаны соотношением

, (3.7)

где  – гиромагнитное отношение для этих моментов. Рассмотренные ранее орбитальные моменты могут различаться для разных электронов атома. В отличие от них величины собственных магнитных моментов   одинаковы у всех электронов, это же справедливо и для собственных механических моментов . Например, они одинаковы у свободного и у связанного в атоме электронов.

В атоме (молекуле) векторная сумма орбитальных и собственных магнитных моментов электронов равна полному магнитному моменту атома (молекулы). Вследствие этого атомы (молекулы) можно рассматривать как микроскопические круговые контура с током, получившие в физике название молекулярных токов Ампера.

Как показывает опыт, для парамагнетиков и ферромагнетиков суммарный магнитный момент атомов (молекул) отличен от нуля. Для диамагнетиков при отсутствии магнитного поля он равен нулю. Явления парамагнетизма, диамагнетизма и ферромагнетизма будут рассмотрены соответственно в подразд. 3.2, 3.3 и 3.5.

Магнитная индукция В — векторная величина, характеризующая магнитное поле и определяющая силу, действующую на движущуюся заряженную частицу со стороны магнитного поля. Эта характеристика является основной характеристикой магнитного поля, так как определяет электромагнитную силу, а также ЭДС индукции в проводнике, перемещающемся в магнитном поле.
Резонансные явления в колебательном контуре Решение задач по физике примеры