Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Теория электромагнитного поля Магнитная индукция Контур с током в неоднородном магнитном поле Магнитное поле в веществе Явление электромагнитной индукции Явление самоиндукции Электромагнитные колебания

Физика курс лекций Теория электромагнитного поля

Электронный микроскоп — устройство, предназначенное для получения изображения микрообъектов; в нем в отличие от оптического микроскопа вместо световых лучей используют ускоренные до больших энергий (30—100 кэВ и более) в условиях глубокого вакуума (примерно 0,1 мПа) электронные пучки, а вместо оптических линз — электронные линзы. В электронных микроскопах предметы рассматривают либо в проходящем, либо в отраженном потоке электронов, поэтому различают просвечивающие и отражательные электронные микроскопы.

Электромагнитные колебания.

Электрический колебательный контур. Формула Томсона.

Электромагнитные колебания могут возникать в цепи, содержащей индуктивность L и емкость C (рис.16.1). Такая цепь называется колебательным контуром. Возбудить колебания в таком контуре можно, например, предварительно зарядив конденсатор от внешнего источника напряжения, соединить его затем с катушкой индуктивности.

Рис.16.1. Электрический колебательный контур.

Поскольку внешнее напряжение к контуру не приложено, сумма падений напряжений на емкости и индуктивности должна быть равна нулю в любой момент времени:

откуда, учитывая, что сила тока , получаем дифференциальное уравнение свободных незатухающих колебаний электрического заряда в колебательном контуре 

.

 Если ввести обозначение

 ,

 то полученное уравнение принимает вид:

.

Решением этого уравнения, как известно, является функция

.

Таким образом, заряд на обкладках конденсатора изменяется по гармоническому закону с частотой ω0, называемой собственной частотой колебательного контура. Период колебаний определяется по формуле Томсона (Thomson W., 1824-1907):

Напряжение на конденсаторе:

,

где  - амплитуда напряжения.

Сила тока в контуре:

.

Сопоставляя полученные выражения, видим, что когда напряжение на конденсаторе, а значит энергия электрического поля, обращается в нуль, сила тока, а, следовательно, энергия магнитного поля, достигает максимального значения (рис.16.2). Таким образом, электрические колебания в контуре сопровождаются  взаимными превращениями энергий электрического и магнитного полей.

Рис.16.2. Графики изменения UC(t) и I(t) в LC-контуре.

Амплитуды тока Im и напряжения Um связаны между собой очевидным соотношением:

.

5.2. Свободные затухающие колебания. Добротность колебательного контура.

Всякий реальный колебательный контур обладает сопротивлением (рис.16.3). Энергия электрических колебаний в таком контуре постепенно расходуется на нагревание сопротивления, переходя в джоулево тепло, вследствие чего колебания затухают.

Рис.16.3. Колебательный RLC-контур.

Уравнение свободных затухающих колебаний можно получить, исходя из того, что в отсутствии внешнего источника напряжения, сумма падений напряжений на индуктивности, емкости и сопротивлении равна нулю для любого момента времени:

 

или, поскольку,

.

Введя обозначение

 ,

этому уравнению можно придать вид:

,

где .

Решение полученного уравнения имеет вид:

 


где

 


Мы видим, что частота свободных затухающих колебаний ω′ меньше собственной частоты ω0. Подставив значения ω0 и β, получим:

Амплитуда затухающих колебаний заряда конденсатора q0(t) уменьшается со временем по экспоненциальному закону (рис.16.4). Коэффициент β называется коэффициентом затухания.

Рис.16.4. Изменение заряда конденсатора со временем в RLC-контуре.

Затухание колебаний принято характеризовать декрементом колебаний λ, определяемым как:

.

Легко видеть, что декремент колебаний обратен по величине числу колебаний Ne, совершаемых за время, в течение которого амплитуда колебаний уменьшается в е раз: λ=1/Ne. Добротностью колебательного контура называется величина:

Из этой формулы видно, что добротность тем выше, чем меньше коэффициент затухания β. При малых затуханиях (λ<<1) можно приближенно считать, что

.

Амплитуда тока в контуре, как и заряд на конденсаторе, убывает со временем по закону . Энергия W, запасенная в контуре, пропорциональна квадрату амплитуды тока (или квадрату напряжения на конденсаторе). Следовательно, W убывает со временем по закону e-2βt. Относительное уменьшение энергии за период колебания Т (при малом затухании) есть:

.

Таким образом, потери энергии в колебательном контуре тем меньше, чем выше его добротность.

Действие магнитного поля на проводник с током. Сила Ампера Опыты Ампера показали, что два проводника притягиваются или отталкиваются в зависимости от направ­ления тока в них. Это взаимодействие объясняется тем, что сила, которую испытывает каждый из проводников, обусловлена магнитным полем, создаваемым током другого проводника. Вообще, магнитное поле действует с некоторой силой на любой проводник с током, находящийся в этом поле.
Резонансные явления в колебательном контуре Решение задач по физике примеры