Оформление сборочного чертежа Выполнение чертежей деталей Метод проекций Последовательность нанесения размеров Проецирующие плоскости Позиционные задачи Метод секущих плоскостей Решение метрических задач Замена плоскостей проекции

Правила выполнения чертежей

Построение условных разверток неразвертывающихся поверхностей Условные развертки неразвертывающихся поверхностей строят в такой последовательности:

- данную поверхность «разрезают» (разделяют) на несколько примерно равных частей;

- каждую из этих частей аппроксимируют отсеком развертывающейся линейчатой поверхности (конуса или цилиндра);

- выполняют приближенные развертки отсеков аппроксимирующих конусов или цилиндров, совокупность которых принимают за условную развертку данной поверхности.

Геометрические построения

Определение центра дуги окружности

 Построения показаны на рисунке 2.6.

1. Назначить на дуге три произвольные точки А, В и С.

2. Соединить точки прямыми линиями.

3. Через середины полученных хорд АВ и ВС провести перпендикуляры.

Точка О пересечения перпендикуляров является центром дуги.

2.4. Сопряжения

Сопряжением называется плавный переход от одной линии к другой.

Роль плавных переходов в очертаниях различных изделий техники огромна. Их обуславливают требования прочности, гидроаэродинамики, промышленной эстетики, технологии. Чаще всего сопряжения осуществляют с помощью дуги окружности.

Из всего многообразия сопряжений различных линий рассмотрим наиболее распространенные:

 1. Сопряжение двух прямых линий.

 2. Сопряжение прямой линии и окружности.

 3. Сопряжение двух окружностей.

Дуги окружностей, при помощи которых выполняется сопряжение, называют дугами сопряжения.

Алгоритм построения

 1. Найти центр сопряжения;

  2. Найти точки сопряжения, в которых дуга сопряжения переходит в сопрягаемые линии.

  3. Построить дуги сопряжения, значит соединить точки сопряжения заданным радиусом сопряжения.

2.4.1.Сопряжение пересекающихся прямых линий при помощи дуги заданного радиуса.

Пример1. Сопряжение двух взаимно перпендикулярных прямых а и b дугой заданного радиуса R.

 Даны две взаимно перпендикулярные прямые а и b. Задан радиус сопряжения R. (рис.2.7а)

Алгоритм построения

1. Находим центр сопряжения.

Проводим две прямые, параллельные а и b, на расстоянии, равном радиусу R. Эти прямые являются геометрическим местом центров окружностей радиуса R, касательных к данным прямым (рис.2.7б);

 Точка О пересечения вспомогательных прямых – центр дуги сопряжения (рис.2.7 в).

2. Находим точки сопряжения.

Проводим перпендикуляры из центра дуги сопряжения к заданным прямым, получаем точки сопряжения А и В (рис.2.7 в).

3. Строим дугу сопряжения.

Радиусом R проводим дугу сопряжения между точками А и В (рис.2.7г).

На рисунках 2.7д и 2.7е показаны законченные построения сопряжения.

Рис.2.7

Пример2 (рис.2.8). Пример 3 (рис.2.9)

  Рис.2.8 Рис.2.9

На данных примерах показано сопряжение двух прямых линий, расположенных под углом друг к другу. Последовательность построения этих примеров такая же, как в примере 1.

Допускают сокращения часто встречающихся сложных терминов начальными буквами; их следует писать прописными буквами, слитно, без точек: КПД (коэффициент полезного действия), ДВС (двигатель внутреннего сгорания) и т.п. Не допускают обозначения месяцев года римскими цифрами; названия следует писать полностью, словами, или обозначать двумя арабскими цифрами (5 июня 2007 г. или 05.06.07). Часто встречающиеся в тексте сложные выражения при первом упоминании пишут полностью и тут же. приводят в скобках сокращенную запись (электрохимическая обработка (ЭХО)). В дальнейшем изложении употребляют сокращенную запись без расшифровки. Если в документе принята особая система сокращений слов или наименований, то должен быть приведен перечень принятых сокращений в алфавитном порядке; этот перечень помещают в конце документа перед перечнем терминов. Сокращения: к-рые (которые), ур-ие (уравнение), вм. (вместо), напр. (например), м.б. (может быть) не допускаются.

 Предельное положение окружности m, проходящей через точки M', M и M'', при стремлении точек M' и M'' к точке M, называется кругом кривизны кривой в точке M (рис.5.3). Радиус R этой окружности называется радиусом кривизны. Величина k=1/R называется кривизной кривой в точке М.

Рис.7.3. Круг кривизны кривой

 Точка кривой называется обыкновенной или регулярной, если в этой точке можно построить единственную касательную к кривой, и особой – в противном случае. Если в обыкновенной точке кривизна кривой имеет экстремальное значение или равна нулю, эта точка называется специальной, например, вершины эллипса, параболы. Специальная точка, в которой кривизна равна нулю, называется точкой перегиба. В ней касательная пересекает кривую и разделяет вогнутую и выпуклые части этой кривой.

 Точка А′, лежащая на нормали n к плоской кривой k на расстоянии r от неё, называется эквидистантной (рис.7.4). Совокупность всех эквидистантных точек называется эквидистантой кривой. Различают внешнюю и внутреннюю эквидистанты (для замкнутых кривых) или правую и левую (при введенном направлении кривой) для незамкнутой кривой.

Рис.7.4

 Эквидистанты имеют большое значение в технике. В частности по эквидистанте движется геометрический центр фрезы (режущего инструмента для фрезерного станка) при обработке плоского контура детали.

Через вершины многоугольника (или ломаной) проводят боковые рёбра многогранника. Точную развертку этого многогранника принимают за приближенную развертку данной развертывающейся поверхности. Точность построенной развёртки во многом зависит от того, насколько близок многогранник к исходной линейчатой поверхности. Развёртку многогранника строят любым из рассмотренных способов. После построения развёртки боковой поверхности заменяющей пирамиды или призмы концы боковых рёбер необходимо соединить между собой плавной линией.
Позиционные задачи на пересечение прямых и плоскостей