Информатика
Математика
Чертежи
Физика
Инженерка
Интегралы
Термех
Решение задач

Черчение

Матанализ
Сопромат
ТОЭ
Энергетика
Курсовая
Искусство
Электроника

Правила нанесения размеров на чертежах

  Конусность – это отношение разности диаметров двух поперечных сечений усеченного конуса к длине между ними (рис.2.29).

Рис.2.29

  На чертеже конусность чаще всего выражается в процентах или соотношениях. Знак конусности острым углом направлен в сторону меньшего диаметра. Проставляют конусность или на полке линии-выноски (рис.2.30), или над осевой линией (рис.2.31).

  Рис.2.30

 Рис.2.31

  Если на чертеже указывают конусность, то на стержне и в отверстии размеры проставляют по разному, исходя из технологии изготовления конуса, так как нормальная конусность заложена на станках с программным управлением. Поэтому нормальную конусность необходимо указывать, а «лишний» размер убирать.

Рис.2.31

  На коническом стержне из двух диаметров указывают больший, так как для изготовления детали нужно взять заготовку большего диаметра. Малый диаметр не указывают (рис.2.31).

Рис.2.32

  В отверстии из двух диаметров указывают меньший, так как для получения конусности нужно сначала просверлить отверстие диаметром, равным малому диаметру, а затем растачивать конусное отверстие (рис.2.32).

 Конусности общего назначения  стандартизованы. Их значение можно посмотреть в ГОСТ 8593-81.

 В задании нужно построить конусность по размерам и вместо буквы n поставить числовое значение, полученное при расчете по формуле на рис.2.29.Проставить размеры (рис.2.33)

Рис.2.33

Если формула (или формула вместе с числовой подстановкой) не умещается в одну строку, производят перенос на следующую строку. Перенос предпочтителен по знакам математических соотношений ( = , <, > ); если это не удается - переносят по знакам сложения и вычитания, а если и это не удается - по знакам умножения. При переносе знак умножения обозначают не точкой, а косым крестом (Х). Знак, по которому производят перенос, ставят два раза: в конце предыдущей строки и в начале следующей. Если расчеты по одной формуле надо повторить многократно - в формулу подставляют числовые величины, общие для данной группы расчетов, сводят их в общий числовой коэффициент и результат расчетов сводят в таблицу, располагая ее вслед за формулой. После каждой формулы следует ставить (или не ставить, где это не требуется) знаки препинания в соответствии с правилами русской пунктуации и содержанием последующего текста.

Широкое распространение в последнее время получила векторная форма задания поверхности, в этом случае поверхность определяется вектор-функцией R некоторой точки N, принадлежащей поверхности. Эта функция зависит от двух скалярных аргументов u и v:

R = R(u,v) = x(u,v)i + y(u,v)j + z(u,v)k,

где x,y,z – координаты вектор-функции. Параметры u и v называются криволинейными координатами поверхности. Каждой паре значений u, v из области их изменения соответствует точка поверхности, координаты которой определяются функциями

x = x(u,v), y = y(u,v), z = z(u,v).

Если один из параметров принять постоянным, например, задаться v=v1, то вектор функции R=R(u,v1) опишет на поверхности некоторую линию v1=const, называемую координатной линией. Переходя к другому значению v=v2, получим следующую линию семейства v2=const. Совокупность линий vi=const (i=1, …, m) образует линейный каркас поверхности (линейным каркасом поверхности называется множество линий, заполняющих поверхность так, что через каждую точку поверхности проходит в общем случае одна линия этого множества).

Аналогично, фиксируя u и изменяя v, можно получить координатную линию u=const. Множество линий uj=const (j=1, ..., n) образует другой линейный каркас той же поверхности. Через каждую точку поверхности можно провести две координатные линии (одну – семейства uj=const, другую – vi=const). Совокупность двух линейных каркасов образует сетчатый каркас поверхности или сеть.

Векторная форма задания поверхностей часто используется для задания кинематических поверхностей. Действительно, пусть образующая линия поверхности задана параметрически в виде r = r(u). Вводя второй параметр v, определяющий перемещение образующей в пространстве, можно получить сетчатый каркас поверхности, описывающийся уравнением r =r (u,v). Причем линии каркаса vi = const в этом случае представляют собой семейство образующих, а линии каркаса uj =const - семейство направляющих линий поверхности (рис.9.2).

Рис.9.2


Позиционные задачи на пересечение прямых и плоскостей