Оформление сборочного чертежа Выполнение чертежей деталей Метод проекций Последовательность нанесения размеров Проецирующие плоскости Позиционные задачи Метод секущих плоскостей Решение метрических задач Замена плоскостей проекции

Способы построения проекций

Плоскости частного положения В зависимости от расположения относительно плоскостей проекций различают плоскости частного положения и плоскости общего вида. Под «частным» понимают такое расположение плоскостей, когда они параллельны или перпендикулярны плоскостям проекций. Плоскости, параллельные плоскостям проекций называются плоскостями уровня. Плоскости перпендикулярные плоскостям проекций, и поэтому проецирующиеся на них в виде прямой линии, называют проецирующими плоскостями.

Перпендикулярность двух плоскостей

Плоскости взаимно перпендикулярны, если одна из них проходит через перпендикуляр к другой плоскости. Таким образом, чтобы построить плоскость, перпендикулярную заданной плоскости, необходимо сначала построить прямую, перпендикулярную данной плоскости, и через эту прямую провести искомую плоскость.

На рис. 6.4, а показано построение плоскости Q (n пересекается с m), проходящей через точку К, перпендикулярной плоскости треугольника АВС и параллельной заданной прямой l (последнее дополнительное условие определяет единственное решение задачи).


Рис.6.4. Плоскость проходящая через перпендикуляр к другой плоскости перпендикулярна ей.

Решение задачи состоит в следующем: вначале, опускаем из точки К перпендикуляр n на плоскость треугольника АВС, для чего проводим горизонталь h и фронталь f в плоскости треугольника, и затем строим n' перпендикулярно h' и n'' перпендикулярно f'', и через точку К проводим прямую m, параллельную прямой l. Две пересекающиеся прямые m и n определяют искомую плоскость, перпендикулярную заданной плоскости.

Аналогично решаются задачи о построении перпендикулярной плоскости к плоскости, заданной следами. На рис. показана такая задача. Кроме того, плоскость Р проведена перпендикулярно и плоскости Н.

а)
б)
в)

Рис. 6.5. Плоскость Q (ее след перепендикулярен P) явно видно, что перпендикулярна P.

По определению: плоскость перпендикулярно другой плоскости, если она перпендикулярно двум пересекающимся прямым этой плоскости.
Если плоскость перпендикулярна горизонтальной линии (горизонтали), то она перпендикулярна горизонтальной плоскости проекций Н Список литературы Текстовой документ должен содержать библиографическое описание - совокупность сведений о документе , приведенных по определенным правилам и необходимых и достаточных для общей характеристики и идентификации документа, а также дающих возможность получить сведения о книгах, статьях, стандартах, патентах, авторских свидетельствах и других материалах, которые были использованы при разработке документа. Библиографическое описание помещают в конце текстового документа под заголовком "Список литературы". Разрешается помещать также список использованной или рекомендуемой литературы. При необходимости разрешено помещать библиографическое описание в конце части или раздела документа. Элементы библиографического описания подразделяют на обязательные и факультативные.

Общая схема решения задачи на построение линии

пересечения двух поверхностей

В начертательной геометрии линию пересечения двух поверхностей находят с помощью приема, который называется способом вспо­могательных секущих поверхностей (способ поверхностей-посред­ников). Этот способ заключается в следующем. Предположим, даны две произвольные поверхности Σ и Ф. Нужно построить линию их пересечения, т.е. определить точки, принадлежащие линии пересечения (рис.13.1).

Рис.13.1

Чтобы найти такие точки, надо выполнить следующие действия.

1. Данные поверхности пересечь некоторой вспомогательной поверхностью Θ. Вид и расположение этой вспомогательной поверхности относительно данных поверхностей должны быть выбраны так, чтобы в пересечении получались простые по форме линии (прямая, окружность) и чтобы проекции этих линий легко строились на комплексном чертеже.

2. Построить линии пересечения вспомогательной поверхности Θ с каждой из данных поверхностей: n = ΣÇΘ, m = ФÇΘ.

3. Отметить точки пересечения полученных линий: М,N = nÇm.

Точку, прямую и плоскость называют элементарными геометрическими фигурами. Из них могут быть созданы все остальные геометрические фигуры. Приняв в качестве элементарной фигуры точку, можно рассматривать любую линию как множество последовательных положений движущейся точки - траекторию точки. Ломаная линия - линия, состоящая из отрезков прямой, расположенных в пространстве под некоторым углом друг к другу.
Позиционные задачи на пересечение прямых и плоскостей