Сопротивление материалов Теоретическая механика

Алгоритмы маршрутизации
Мультикомпьютеры
Выбор топологии вычислительной системы
Сбои в персональных компьютерах
Запись на диски и в файлы
Процессы и ресурсы
Балансировка вычислительной
нагрузки процессоров
Математическая статистика
Предел функции Интегрирование
Решение интегралов
Вычисление двойных и тройных интегралов
Курсовая на вычисление интеграла
Формула Тейлора для ФНП
Производная сложной ФНП
Интегрирование функций нескольких переменных
Геометрические свойства интеграла ФНП
Типовые задачи
Вычислить интеграл
Вычислить момент инерции
Вычислить повторный интеграл
Решения задачи Коши
Метод Эйлера
Оформление сборочного чертежа
Изображения
Способы преобразования чертежа
 Нанесение размеров
Аксонометрические проекции
Резьбы, резьбовые изделия
Разъемные соединения
Неразъемные соединения
Шероховатость поверхности
Сборочный чертеж
Деталирование чертежей
Решение задач по физике примеры
Электротехника
Оптика
Билеты к экзамену по физике
Теория электромагнитного поля
Элементы электрических цепей
Промышленная электроника
Цифровая электроника
Теоретические основы электротехники
Сопротивление материалов
Метод сечений
Перемещения и деформации
Общие принципы расчета конструкции
Моменты инерции сечения
Кручение бруса
Определение опорных реакций
Момент сопротивления
Метод начальных параметров
Косой изгиб
Внецентренное растяжение и сжатие
Теории прочности
Метод сил
Расчет на усталостную прочность
Задача Эйлера
Формула Ясинского
Определение прогиба и напряжений
Запас усталостной прочности
Основы теории упругости
Основы теории пластичности
Рождение абстрактного искусства
Художники эпохи Просвещения
Теоретическая механика

Сопротивление материалов наука о прочности, жесткости и устойчивости элементов инженерных конструкций.

Внешние и внутренние силы. Метод сечений.

Внутренние усилия должны быть так распределены по сечению, чтобы деформированные поверхности сечения А при совмещении правой и левой частей тела в точности совпадали.

В заключение заметим, что при выполнении практических расчетов, для наглядности, как правило, определяются графики функций внутренних силовых факторов относительно координатной оси, направленной вдоль продольной оси стержня.

Перемещения и деформации Под действием внешних сил твердые тела изменяют свою геометрическую форму, а точки тела неодинаково перемещаются в пространстве. Вектор , имеющий свое начало в точке А недеформированного состояния, а конец в т.  деформированного состояния, называется вектором полного перемещения т.А (рис.1.5,а).

Закон Гука и принцип независимости действия сил Многочисленные экспериментальные наблюдения за поведением деформируемых тел показывают, что в определенных диапазонах перемещения точек тела пропорциональны действующим на него нагрузкам.

Внутренние силы и напряжения Под растяжением (сжатием) понимают такой вид нагружения, при котором в поперечных сечениях стержня возникают только нормальные силы, а прочие силовые факторы равны нулю.

Удлинение стержня и закон Гука Рассмотрим однородный стержень с одним концом, жестко заделанным, и другим-свободным, к которому приложена центральная продольная сила Р (рис.2.2).

 Для стального бруса квадратного сечения сжатого силой Р с учетом собственного веса при исходных данных приведенных ниже, требуется (рис.2.3,а): 1.Определить количество расчетных участков;

Аналогично предыдущему проводим сечение 2-2 на расстоянии z2 (рис.2.3,в). Для верхней части составляем уравнение равновесия åz=0.

Потенциальная энергия деформации Внешние силы, приложенные к упругому телу и вызывающие изменение геометрии тела, совершают работу А на соответствующих перемещениях.

Статически определимые и статически неопределимые системы Если при рассмотрении заданной системы, находящейся в равновесном состоянии от действия заданных внешних нагрузок, все реакции в связях закрепления, а также внутренние усилия в ее элементах, можно определить только по методу сечений, без использования дополнительных условий, то такая система называется статически определимой.

Теперь перейдем к анализу деформаций в растянутом стержне. Наблюдения показывают, что его удлинение в продольном направлении сопровождается пропорциональным уменьшением поперечных размеров стержня (рис.2.7).

Основные механические характеристики материалов Для количественной оценки основных свойств материалов, как правило, экспериментально определяют диаграмму растяжения в координатах s и e (рис.2.9),

Общие принципы расчета конструкции В результате расчета нужно получить ответ на вопрос, удовлетворяет или нет конструкция тем требованиям прочности и жесткости, которые к ней предъявляются.

Пример расчета (задача № 2) Абсолютно жесткий брус АЕ (рис.2.12,а), имеющий одну шарнирно неподвижную опору С и прикрепленный в точках В, Д и Е тремя тягами из упруго-пластического материала, нагружен переменной по величине силой Р.

Для составления дополнительных уравнений рассмотрим деформированное состояние системы (рис.2.12,в), имея в виду, что брус абсолютно жесткий и поэтому после деформации тяг останется прямолинейным.

Определить в процессе увеличения нагрузки Р такую ее величину, при которой напряжение в одной из тяг достигнет предела текучести.

Найти несущую способность из расчетов по методам допускаемых напряжений и разрушающих нагрузок при одном и том же коэффициенте запаса прочности.

При выполнении практических расчетов важно знать, как меняются статические моменты сечения при параллельном переносе координатных осей (рис3.2).

Моменты инерции сечения.

Определим осевые моменты инерции прямоугольника относительно осей x и y, проходящих через его центр тяжести (рис.3.4).

Главные оси и главные моменты инерции Рассмотрим, как изменяются моменты инерции плоского сечения при повороте осей координат из положения x и y к положению u и v. Из рис.3.5,б легко установить, что u=ysina+xcosa;v=ycosa-xsina. (3.10).

 Для сечения, составленного из швеллера №20а, равнобокого уголка (80;80;8)10-9м3 и полосы (180;10)10-6м2 (рис.3.6) требуется:1.Найти общую площадь сечения; 2.Определить центр тяжести составного сечения;

Определить центр тяжести составного сечения. В качестве вспомогательных осей для определения положения центра тяжести примем горизонтальную и вертикальную оси xшв и yшв, проходящие через центр тяжести швеллера.

Найти положение главных центральных осей инерции. Угол наклона главных осей инерции, проходящих через центр тяжести составного сечения, к центральным осям инерции xC и yC определим по формуле: .

Кручение бруса с круглым поперечным сечением Здесь под кручением понимается такойвид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент.

Парные им напряжения возникают в продольных плоскостях в осевых сечениях. Величину крутящего момента Mz можно определить через t с помощью следующих рассуждений.

 Стальной валик переменного сечения, испытывающего кручение, закручивается крутящими моментами, действующими в двух крайних и двух пролетных сечениях.

Сначала определим моменты сопротивления сечения валика для каждого участка. I участок (трубчатое сечение) согласно (4.13):где ;

Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки. Касательные напряжения в точках поперечного сечения валика определяются по формулам:

Построить эпюру углов закручивания. Угол закручивания на i-ом участке вала в соответствии с (4.10) определяется:,

где-угол закручивания на правом конце (i-1)-го участка (для первого участка -начальный угол закручивания вала); li - координата начала i-го участка.

Кручение тонкостенного бруса В машиностроении, авиастроении и вообще в технике широко применяются тонкостенные стержни с замкнутыми (рис.4.7,а) и открытыми профилями (рис.4.7,б) поперечных сечений.

Далее рассмотрим брус, имеющий поперечное сечение в форме замкнутого тонкостенного профиля (рис.4.9).

Пример расчета (задача 5) Пусть задан тонкостенный стержень (рис.4.10,а) при действии самоуравновешивающих крутящих моментов на двух противоположных концах, требуется: 1.Определить выражения максимальных напряжений и углов закручивания в случаях, когда стержень имеет открытый (рис.4.10,б) и замкнутый (рис.4.10,в) профиль;

Изгиб Внутренние усилия в поперечных сечениях бруса.

Для определения внутренних силовых факторов-изгибающего момента М(z) и поперечной силы Q(z) как функций от продольной координаты z, воспользуемся методом сечений.

Основные дифференциальные соотношения теории изгиба Пусть брус нагружен произвольным образом распределенной нагрузкой q=f(z)

Напряжения при чистом изгибе Рассмотрим наиболее простой случай изгиба, называемый чистым изгибом.

Выразим момент внутренних сил относительно нейтральной оси Mx через s. Очевидно, что . (5.8).

Для статически определимых систем: схемы I (консольная балка, рис.5.8,а), схемы II (двухопорная балка с консолями, рис.5.13) и схемы III (плоской рамы в виде ломаного бруса, рис.5.17) при последовательном их рассмотрении требуется: 1.Построить эпюры Mx и Qy для всех схем и эпюру Nz для схемы III;

Проведя сечение I-I, рассмотрим равновесие правой отсеченной части балки длиной z1, приложив к ней все действующие справа от сечения заданные нагрузки и внутренние силовые факторы Qy и Mx, возникающие в сечении, которые заменяют действие отброшенной части балки (рис.5.9).

Так как, поперечная сила в пределах участка меняет знак, т.е. имеет промежуточное нулевое значение (рис.5.8,в), то в этом сечении возникает экстремальное значение изгибающего момента.

При построении приблизительного вида изогнутой оси балки по эпюре Mx необходимо знать, что знак изгибающего момента связан с характером деформации балки от действия заданной внешней нагрузки.

При общем случае нагружения в заданной системе возникают три опорные реакции.

Поместив начало системы координат в центре тяжести крайнего левого поперечного сечения балки, и рассекая ее в пределах участкаI, рассмотрим равновесие левой части балки длиной z1 (рис.5.14,а).

Сделав сечение в пределах участкаIII, составив и решив уравнения равновесия Sy=0 и   для левой отсеченной части (рис.5.15), получим аналитические выражения изменения Qy и Mx на участкеIII, где z3 изменяется в пределах 3z37м: Sy=0, --P+RA-q(z3-3)=0,

Для получения аналитических выражений изменения Qy и Mx на участкеIV целесообразно начало координат перенести в сечение D и рассматривать равновесие правой отсеченной части, т.к. в этом случае вследствие меньшего количества внешних сил, приложенных к правой части балки, аналитические выражения будут проще по своему виду, а вычисление ординат менее трудоемко.

Схема III. Плоская рама (задача №8) Заданная плоская стержневая система (рис.5.17,а), элементы которой представляют собой прямолинейные стержни, жестко соединенных между собой, называется рамой.

Определение внутренних силовых факторов в сечениях рам производится также с помощью метода сечений. Однако при выполнении разрезов всегда следует выяснить, какую из частей рамы считать левой, а какую правой.

Участок III (0z34м) (рис.5.20). Приняв начало координат в сеченииD и сделав разрез в пределах этого участка, рассмотрим равновесие правой отсеченной части длиной z3.

Касательные напряжения при поперечном изгибе. Главные напряжения при изгибе.

Так как вертикальная площадка выделенного элемента принадлежит поперечному сечению балки, испытывающему поперечный изгиб, то нормальные напряжения s на этой площадке определяются по формуле (5.10), а касательные напряжения t-по формуле Д.И.Журавского (5.16).

 Для составной балки, имеющей поперечное сечение, показанное на рис.5.22, требуется: 1.Определить расчетные параметры поперечного сечения балки;

  Момент сопротивления Wx для точек1 и 2 определим по формулам: для точки1 м3;

Касательное напряжение определим по формуле Журавского: , где -расчетная поперечная сила, d-ширина сечения на уровне точки3.

Перемещения при изгибе. Метод начальных параметров.

На границах соседних участков прогибы и углы поворота являются непрерывными функциями.

Для вывода обобщенного выражения изгибающего момента введем следующий оператор , означающий, что члены выражения, стоящее перед ним следует учитывать при z>li и игнорировать при zli.

Для схем стальных балокI и II, изображенных на рис.5.25 и 5.26, определить методом начальных параметров углы поворота сечения и прогиб в точкеD.

Прогиб точки D происходит вниз, а сечение поворачивается по часовой стрелке.

Косой изгиб Под косым изгибом понимается такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис.5.27,а).

  Стальная балка АВ, расчетная схема и поперечное сечение которой показаны на рис.5.28,а, (c=0,03м) нагружена силами Р1 и Р2.

Вычислить наибольшие растягивающие и сжимающие нормальные напряжения. Вершины стрелок нормальных напряжений, определяемых по формуле (5.26) будут лежать на плоскости, пересекающей плоскость поперечного сечения по нулевой линии.

Выражение для прогибов fy(z) получаем с помощью метода начальных параметров:. (5.32).

Внецентренное растяжение и сжатие Внецентренное сжатие и растяжение как и косой изгиб относится к сложному виду сопротивления бруса.

Наибольшее напряжения, как и при косом изгибе, имеют место в точке наиболее удаленной от нейтральной линии.

Нахождение положения главных центральных осей. Так как поперечное сечение бруса (рис.5.33) имеет две оси симметрии xС и yС, то они и будут главными центральными осями инерции.

  Построить ядро сечения. Для построения ядра симметричного сечения рассмотрим два положения касательной к контуру сечения I-I и II-II (рис.5.33).

Теории прочности Как показывают экспериментальные исследования, прочность материалов существенно зависит от вида напряженного состояния.

Дан пространственный консольный брус с ломаным очертанием осевой линии, нагруженный сосредоточенной силой Р=1кН и равномерно распределенной нагрузкой q=2кН/м.

Следует отметить, что при определении опорных реакций их направление можно указать произвольно, а затем из решения уравнения равновесия будет ясно, как в действительности действует реакция: если результат положительный, то реакция действует именно так, как мы предварительно указали, если отрицательный-то наоборот.

В центре сечения помещаем систему координат. Оси x и y совпадают с направлением главных осей инерции сечения, показанных на рис.5.34,г.

Установить вид сопротивления для каждого участка бруса. По эпюрам устанавливаем вид сопротивления на каждом участке бруса.

При кручении круглого сечения возникают касательные напряжения, максимальные значения которых определяются по формуле:, где Wp-момент сопротивления при кручении.

Проверка прочности при расчетным сопротивлении R=180МПа. Расчетное напряжение по третьей теории прочности для плоского напряженного состояния определяется по формуле: .

Расчет стастически неопределимых систем методом сил Стержневые системы. Степень статической неопределимости.

Определение перемещений методом Мора Суть метод Мора в следующем.

Если принять EI=const, то перемещение в некоторой точке стержня определяется как интеграл от произведения двух функций моментов-Мx и . В общем виде интеграл Мора можно выразить следующей формулой: .(6.4).

Метод сил Суть этого метода заключается в том, что заданная статически неопределимая система освобождается от дополнительных связей как внешних, так и внутренних, а их действие заменяется соответствующими силами и моментами.

Определить степень статической неопределимости системы и составить уравнение совместности деформаций.

При вычислении D1P было учтено, что эпюры М1 и МP имеют разный знак, т.к. вызывают растяжение разных волокон-об этом говорит отрицательный знак при D1P.

Устойчивость прямых стержней Понятие об устойчивости. Задача Эйлера.

Рассмотрим условия, при которых происходит переход от центрально сжатого состояния к изогнутому, т.е. становится возможной криволинейная форма оси стержня при центрально приложенной сжимающей силе Р.

Границы применимости решения Эйлера. Формула Ясинского.

При гибкостях стержня, находящихся в диапазоне 0< l<40¸50, стержень настолько “короток”, что его разрушение происходит по схеме сжатия, следовательно, критические напряжения можно приравнять в этом случае к пределу пропорциональности.

Несмотря на простоту выражения (7.19) расчет сжатых стержней производится, как правило, в несколько этапов. Это связано с тем, что величина j зависит от формы и размеров сечения, поэтому не может быть назначена заранее.

Подбор сечения стойки из двух швеллеров. При рассмотрении этого вопроса составное сечение стойки следует рассматривать как цельное, и поэтому расчет приведенной гибкости можно не выполнять.

Момент инерции поперечного сечения стойки из двух швеллеров относительно оси x:  Момент инерции составного сечения относительно оси y можно изменять, сближая или удаляя швеллеры один относительно другого.

Колебания системы с одной степенью свободы Пренебрегая массой и продольными деформациями консольного бруса, рассмотрим колебания массы m, закрепленной на свободном конце бруса, при действии силы Р(t), изменяющейся по гармоничному закону по времени t :Р(t)=Р0sinwt, 

График b в зависимости от отношения частот и параметра затухания n приведен на рис.8.3. Откуда следует, что при w®j Р0d11b, т.е. амплитуда вынужденных колебаний резко возрастает, а при n®0, w®j, получаем Р0d11 b®¥.

Определить динамический прогиб и напряжения в опасных сечениях балок КD и АВ, возникающих под действием работающего электромотора весом G=10кН (рис.8.4,а).

Для вычисления полного перемещения сеченияС с учетом характера опирания балкиКD на консольную балку необходимо найти прогиб  консольной балки АВ от действия на нее силы РK=-RK=5кН.

Определение прогиба и напряжений. Максимальное значение напряжения и прогиб, возникающие от совместного действия статических и динамических нагрузок, определяем по формулам:кН/м2,.

Величина d11-прогиб, который получила бы балка под действием единичной статической силы, приложенной в месте удара.

Определение полного статического прогиба сеченияС балки КD. С начала определим статический прогиб сечения С балки КD при опирании ее на абсолютно жесткое основание.

Определение динамических коэффициентов и напряжений. Динамический коэффициент при падении груза G на балкуКD, опирающуюся на консольные балкиАК и DМ, определяем по формуле:.

Прочность при циклических нагрузках Основные характеристики цикла и предел усталости.

Для цветных металлов и для закаленных до высокой твердости сталей, так как они разрушаются при любом значении напряжений, вводится понятие условного предела усталости.

При расчетах на усталостную прочность, особенности, связанные с качеством обработки поверхности детали, учитываются коэффициентом качества поверхности, получаемом при симметричных циклах нагружения: , (9.4).

Запас усталостной прочности и его определение Сначала построим диаграмму усталостной прочности (часто, для простоты рассуждений предельную линию представляют в виде прямой) и покажем на ней рабочую точкуМ цикла (с координатами sm и sа) в случае, если рассматриваемый элемент испытывает только простое растяжение и сжатие (рис. 9.7).

Аналогичным образом могут быть получены соотношения усталостной прочности и при чистом сдвиге. Эксперименты показывают, что диаграмма усталостной прочности для сдвига заметно отличается от прямой линии, свойственной простому растяжению-сжатию, и имеет вид кривой.

Для цилиндрической клапанной пружины (рис.9.9) двигателя внутреннего сгорания определить коэффициент запаса прочности аналитически и проверить его графически по диаграмме предельных амплитуд, построенной строго в масштабе.

Определение коэффициента запаса прочности. Деталь (пружина) может перейти в предельное состояние по усталости и по причине развития пластических деформаций. Коэффициент запаса прочности по усталости определяются по формулам (9.10): ,

Основы теории упругости и пластичности Напряженное состояние в точке.Уравнения равновесия.

Определение напряжений на произвольной площадке. Главные оси и главные напряжения.

Такие оси называются главными осями. Соответствующие им взаимно перпендикулярные площадки называются главными площадками, а нормальные напряжения на них-главными напряжениями.

Рассмотрим как определяются величины главных напряжений через заданные значения шести компонентов напряжений sx, sy, sz, txy, txz, tyz в произвольной системе координат x, y, z. Возвращаясь к рис.10.2, предполагаем, что наклонная площадка является главной.

Для определения положения главных площадок необходимо вычислить значения направляющих косинусов следующим образом.

Геометрические уравнения и уравнения неразрывности Происходящие при нагружении тела перемещения его точек можно задать при помощи совокупности трех функций (см. п.1.5): u(x,y,z), v(x,y,z) и w(x,y,z), определяющих перемещения вдоль координатных осей x, y и z, соответственно.

Физические уравнения теории упругости дляизотропного тела. Обобщенный закон Гука.

Возможные способы решения задач теории упругости В общем случае искомыми величинами в задачах теории упругости являются функции перемещений, компоненты напряженного и деформированного состояний среды.

Теория предельных напряженных состояний При действии внешних сил материал конструкции может находиться в различных механических состояниях.

Плоская задача в декартовых координатах На практике различают два вида плоской задачи-плоскую деформацию и обобщенное плоское напряженное состояние.

Вычисление величин главных напряжений. Для решения приведенного уравнения применим формулу Кардано:

,

Проверка правильности вычисления главных напряжений: так как I1, I2 и I3-инварианты, значит их значения постоянны.

Дана прямоугольная невесомая пластина (рис.10.6), по кромкам которой действуют внешние силы, равномерно распределенные по ее толщине, равной единице/

Выяснить характер распределенных по кромкам пластины внешних сил, под действием которых имеет место данная система напряжений, и построить эпюры напряжений.

По полученным эпюрам напряжений, принимая их за эпюры распределенной внешней нагрузки, произвести проверку равновесия пластины. Выполним проверку равновесия пластины. Для этой цели найдем равнодействующие внешних сил, действующих по кромкам пластины (рис.10.8):

Основы теории пластичности При испытании образцов обнаруживаются следующие основные особенности характера деформирования материалов при их нагружении.

Процесс деформирования материалов можно условно разделить на две стадии.

При деформировании материалов пластические деформации, как правило, существенно больше упругих и, учитывая, что объемная деформация нe является величиной порядка упругих удлинений, поэтому принимается, что при пластическом деформировании изменение объема пренебрежительно мало.

Для трехстержневой системы (рис.10.10,а) при условии, что диаграмма растяжения для стержней имеет участок упрочнения (рис.10.10,б), при следующих исходных данных: a=30°; l=1,0м; F=210-4м2-площади поперечных сечений стержней; E=2108 кН/м2-модуль упругости материалов стержней; sT= =2,5105 кН/м2-предел упругости материала; sB=3,9105 кН/м2 - временное сопротивление; eB=0,02 -значение деформации, соответствующее напряжению sB, требуется:1.Определить абсолютные и относительные удлинения стержней и значение силы P=P1, при котором в наиболее напряженном стержне напряжения достигают предела упругости;

Определить абсолютные и относительные удлинения стержней и значение силы P=P2, при котором все элементы заданной системы переходят в пластическую стадию деформирования.

Как показали расчеты, учет пластической стадии работы позволил выявить дополнительные резервы несущей способности заданной системы, т.к. величина разрушающей силы заданной системы в действительности равна P=P3=200,97 кН.

Исключая средний стержень, система превращается из статически неопределимой в статически определимую.

Пластины и оболочки Теория тонких пластин.

Отрезок нормали к срединной поверхности при изгибе остается прямым и перпендикулярным к срединной поверхности. Это допущение носит название гипотезы прямых нормалей.

 В рассмотрим эллиптическую пластинку, жестко заделанную по контуру и нагруженную равномерно распределенной нагрузкой интенсивностью q (рис.11.4). При a=1,3м, b=1,0м, h=0,18м, q=300кН/м2, g=1/6, Е=2108кН/м2, требуется: 1.Определить прогиб пластины в ее середине;

Проверим, удовлетворяет ли выбранная функция w основному дифференциальному уравнению (11.9). Вычислим частные производные .

Для построения эпюр Mx и My достаточно найти их значения в трех точках по осям эллипса, так как вдоль них эти функции имеют параболический характер изменения, для этого воспользуемся формулами (11.15) ¸ (11.17):

Прочность толстостенной цилиндрической оболочки при действии внутреннего и внешнего давлений.

Для изучения напряженного состояния выделим из цилиндра элемент в форме криволинейного шестигранника (рис.11.8).

Рассмотрим случай нагружения цилиндра только внутренним давлением, тогда принимая pв=0, из (11.21) и (11.27) получим:;

 Для толстостенной стальной трубы, имеющей внутренний диаметр d=0,03м и наружный диаметр D=0,18м, и изготовленной из пластичного материала с sT=250МПа и с коэффициентом Пуассона m=0,5, требуется: 1.Определить давление pT, при котором в материале трубы начнется пластическое деформирование;

Теоретическая механика

Основные понятия и аксиомы статики

В механике изучают законы взаимодействия и движения материальных тел. Механическим движением называют происходящее с течением времени изменение положения тел или точек в пространстве. Статика основана на аксиомах, вытекающих из опыта и принимаемых без доказательств. Третья аксиома служит основой для преобразования сил. Не нарушая механического состояния абсолютно твердого тела, к нему можно приложить или отбросить от него уравновешенную систему сил. Пятая аксиома устанавливает, что в природе не может быть одностороннего действия силы. При взаимодействии тел всякому действию соответствует равное и противоположно направленное противодействие.

Проекция силы на ось Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников в большинстве случаев сопряжено с громоздкими построениями. Более общим и универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Проекция векторной суммы на ось

Уравнения равновесия плоской системы сходящихся сил Сходящаяся система сил находится в равновесии в случае замкнутости силового многоугольника. Равнодействующая при этом равна нулю (). Проекции равнодействующей системы сходящихся сил на координатные оси равны суммам проекций составляющих сил на те же оси Непосредственное применение условий равновесия в геометрической форме дает наиболее простое решение для системы трех сходящихся сил. При наличии в системе четырех и более сил рациональнее применять аналитический метод, который является универсальным и применяется чаще, всего.

Плоская система сходящихся сил Геометрический метод сложения сил, приложенных в одной точке Силы называют сходящимися, если их линии действия пересекаются в одной точке. Различают плоскую систему сходящихся сил, когда линии действия всех данных сил лежат в одной плоскости, и пространственную систему сходящихся сил, когда линии действия сил лежат в разных плоскостях.

Пара сил и ее действие на тело Две равные и параллельные силы, направленные в противоположные стороны и не лежащие на одной прямой, называются парой сил. Примером такой системы сил могут служить усилия, передаваемые руками шофера на рулевое колесо автомобиля. Пара сил имеет большое значение в практике.

Упражнение

Эквивалентность пар

Момент сил относительно точки и оси Момент силы относительно точки определяется произведением модуля силы на длину перпендикуляра, опущенного из точки на линию действия силы Будет ли тело находиться в равновесии, если на него действуют три пары сил, приложенных в одной плоскости, и моменты этих пар имеют следующие значения: М1 = —600 Нм; М2 = 320 Нм и М3 = 280 Нм

Центр параллельных сил и его координаты Установим одно важное свойство точки приложения равнодействующей двух параллельных сил Применим теорему о моменте равнодействующей (теорему Вариньона) относительно начала координат (точки О) Центр тяжести шара совпадает с его геометрическим центром Сумма статических моментов всех частей фигуры называется статическим моментом площади фигуры относительно данной оси Вычислите значение равнодействующей  и абсциссу хC центра параллельных сил

Элементы кинематики

В кинематике изучается механическое движение материальных точек и твердых тел без учета причин, вызывающих эти движения. Кинематику часто называют геометрией движения. Механическое движение происходит в пространстве и во времени. Пространство, в котором происходит движение тел, рассматривается как трехмерное, все свойства его подчиняются системе аксиом и теорем эвклидовой геометрии. Время полагают ни с чем не связанным и протекающим равномерно.

Уравнение движения точки В общем случае точка может двигаться по криволинейной траектории. Для изучения криволинейного движения точки необходимо уметь определить ее положение в назначенной системе отсчета (системе координат) в любой момент времени

Скорость точки Рассмотрим некоторые основные определения, важные для последующего изложения. Если точка за равные промежутки времени проходит равные отрезки пути, то ее движение называется равномерным.

Ускорение точки При движении по криволинейной траектории скорость точки может изменяться и по направлению, и по величине. Изменение скорости в единицу времени определяется ускорением.

Виды движения точки в зависимости от ускорения Рассмотрим возможные случаи движения точки и проанализируем выведенные выше формулы для касательного и нормального ускорений.

Изменение угловой скорости в единицу времени определяется угловым ускорением, равным производной угловой скорости по времени

Скорости и ускорения точек вращающегося тела Если тело вращается вокруг оси, то его точки перемещаются по окружностям, радиусы которых r равны расстояниям точек от оси вращения Пример. Твердое тело, вращающееся вокруг неподвижной оси, имеет в данный момент угловую скорость ω = 5 рад/с и угловое ускорение ε = - 20 рад/с2.

Кинематические пары и цепи Кинематической парой называется подвижное соединение двух соприкасающихся тел, например поршень и цилиндр, вал и подшипник и др. Тела, составляющие кинематическую пару, называются звеньями. Звено механизма может состоять из нескольких деталей (отдельно изготовляемых частей механизма), не имеющих между собой относительного движения. Высшие кинематические пары

Предел применимости формулы Эйлера. Эмпирические формулы для критических напряжений

Понятие о трении Трение в машинах играет существенную роль. В передаточных механизмах — фрикционных, канатных, ременных и др. — передача движения от ведущего звена к ведомому осуществляется трением. В других случаях трение препятствует движению, поглощая значительную часть работы движущих сил.

Основы динамики

В динамике рассматривается движение материальных точек или тел под действием приложенных сил; устанавливается связь между приложенными силами и вызываемым ими движением. Динамика основывается на ряде вытекающих из опыта аксиом; некоторые из них были рассмотрены в статике.

Масса пропорциональна силе тяжести тела и представляет собой постояную скалярную величину, которая всегда положительна и не зависит от характера движения.

Работа постоянной силы на прямолинейном перемещении Определим работу для случая, когда действующая сила постоянна по величине и направлению, а точка ее приложения перемещается по прямолинейной траектории.

Мощность Мощностью называется работа, совершаемая силой в единицу времени

Работа и мощность при вращательном движении Часто встречаются детали машин, вращающиеся вокруг неподвижных осей. Причиной вращательного движения является приложенный к телу вращающий момент относительно оси, который создается парой сил или силой F

Потенциальная и кинетическая энергия Существуют две основные формы механической энергии: потенциальная энергия, или энергия положения, и кинетическая энергия, или энергия движения. Чаще всего приходится иметь дело с потенциальной энергией сил тяжести. Потенциальной энергией силы тяжести материальной точки или тела в механике называется способность этого тела или точки совершать работу при опускании с некоторой высоты до уровня моря (до какого-то уровня). Потенциальная энергия численно равна работе силы тяжести, произведенной при перемещении с нулевого уровня до заданного положения.

Сила трения качения Сопротивление трения качения возникает при перекатывании криволинейных поверхностей контактирующихся тел.

Основное уравнение динамики для вращательного движения твердого тела

Основные понятия сопративления материалов

Понятие о деформации и упругом теле Все элементы сооружений или машин должны работать без угрозы поломки или опасного изменения сечений и формы под действием внешних сил. Размеры этих элементов в большинстве случаев определяет расчет на прочность. Элементы конструкции должны быть не только прочными, но и достаточно жесткими и устойчивыми.

Основные допущения о характере деформаций Перемещения точек упругого тела прямо пропорциональны действующим нагрузкам. Это справедливо в известных пределах нагружения. Элементы и конструкции, подчиняющиеся этому допущению, называют линейно деформируемыми.

Метод сечений. Виды деформаций Стержнями (брусьями) называются такие элементы конструкций, длина которых значительно превышает их поперечные размеры. Кроме стержней (брусьев) могут встречаться пластины или оболочки, у которых только один размер (толщина) мал по сравнению с двумя другими, и массивные тела, у которых все три размера примерно одинаковы. Для определения внутренних силовых факторов необходимо руководствоваться следующей последовательностью действий Пример. Брус, имеющий форму буквы Г, с защемленным нижним сечением нагружен на свободном конце вертикальной силой F. Определить деформированное состояние горизонтального и вертикального участков бруса.

Растяжение и сжатие Продольные силы при растяжении и сжатии. Построение эпюр продольных сил

Напряжения в поперечных сечениях растянутого (сжатого) стержня При растяжении или сжатии осевыми силами стержней из однородного материала поперечные сечения, достаточно удаленные от точек приложения внешних сил, остаются плоскими и пере­мещаются поступательно в направлении деформации. Это положение называют гипотезой плоских сечений

Пример. Для заданного ступенчатого бруса, изготовленного из стали марки СтЗ (рис. 69, а) построить эпюры продольных сил и нормальных напряжений по длине; проверить брус на прочность. Допускаемое напряжение для материала бруса согласно табл

Расчеты на срез и смятие Условия прочности Срезом или сдвигом называется деформация, возникающая под действием двух близко расположенных противоположно направленных равных сил. При этом возникают касательные напряжения. Напряжения смятия распределены по поверхности неравномерно. Так как закон их распределения точно неизвестен, расчет ведут упрощенно, считая их постоянными по расчетной площади смятия.

Кручение Чистый сдвиг Экспериментально чистый сдвиг может быть осуществлен при кручении тонкостенной трубы, поэтому деформация чистого сдвига отнесена к теме «кручение».

Когда вращение от двигателя передается при помощи передаточного вала нескольким рабочим машинам, крутящий момент не остается постоянным по длине вала. Характер изменения крутящего момента по длине вала наиболее наглядно может быть представлен эпюрой крутящих моментов. Расчеты на прочность и жесткость при кручении Пример. По данным примера 16 определить диаметр вала, удовлетворяющий условиям прочности и жесткости на наиболее напряженном участке. Материал вала — сталь 40. Допускаемое напряжение на кручение [τк] = 30 МПа, допускаемый угол закручивания [θ°] = 1.10-2 рад/м = 10.10-5 рад/мм; модуль сдвига G = 8.104 Н/мм2. Справедлив ли закон Гука при кручении, если напряжение не превышает предела пропорциональности?

Расчеты на прочность при изгибе Проверку прочности и подбор сечений изгибаемых балок обычно производят исходя из следующего условия: наибольшие нормальные напряжения в поперечных сечениях не должны превосходить допускаемых напряжений [а] на растяжение и сжа­тие, установленных нормами или опытом проектирования для материала балки.

Изгиб Элементы конструкций, работающих на изгиб, называют балками. Чаще всего встречается поперечный изгиб, когда внешние силы, перпендикулярные к продольной оси балки, действуют в плоскости, проходящей через ось балки и одну из главных центральных осей ее поперечного сечения, в частности, в плоскости, совпадающей с плоскостью симметрии балки, например, сила F Нормальные напряжения при изгибе

Определение наибольшего допускаемого изгибающего момента производится в том случае, когда заданы размеры сечения
балки и допускаемое напряжение

Понятие о сложном деформированном состоянии Сложное деформированное состояние возникает в тех случаях, когда элемент конструкции или машина подвергается одновременно нескольким простейшим деформациям.

Основные понятия усталостного разрушения Элементы конструкций и машин часто работают при периодически меняющихся (по величине и даже по знаку) напряжениях. В подобных условиях находятся, например, оси вагонов, рельсы, рессоры, поршневые штоки, валы и многие другие детали машин.

Циклы напряжений. Определение предела выносливости

Местные напряжения. Коэффициент концентрации напряжений В сечениях деталей, где имеются резкие изменения размеров, надрезы, острые углы, отверстия, возникают высокие местные напряжения (так называемая концентрация напряжений). В этих сечениях, как правило, развиваются трещины усталости, приводящие в итоге к разрушению детали.

Понятие о продольном изгибе Вопрос об устойчивости приходится решать в случае сжатия стержня, размеры поперечного сечения которого малы по сравнению с длиной. При увеличении сжимающих сил прямолинейная форма равновесия стержня может оказаться неустойчивой, и стержень выпучится, ось его искривится.

Понятие о теориях прочности Испытания материалов позволяют определить опасные, или предельные, напряжения при каких-то простейших деформированных состояниях.

Напряжения Метод сечений не позволяет установить закон распределения внутренних сил по сечению. Необходимы дополнительные допущения о характере деформации. Эти допущения вводят при изучении различных видов деформации бруса. Можно ли с помощью метода сечения определить закон распределения внутренних сил по сечению?

Механические испытания материалов Физико-механические свойства материалов изучают в лабораторных условиях путем нагружения образца до разрушения. Применяемые в настоящее время механические испытания материалов весьма многообразны. По характеру приложения внешних сил они разделяются на статические, динамические (или испытания ударной нагрузкой) и испытания на выносливость (нагрузкой, вызывающей напряжения, переменные во времени).

Предел пропорциональности и предел упругости у для многих материалов, например для стали, оказываются настолько близки, что зачастую их считают совпадающими и отождествляют несмотря на физическое различие этих пределов.

За характеристику прочности хрупких материалов принимают наибольшее значение напряжения, соответствующее моменту разрыва. Это напряжение для хрупких материалов называют пределом прочности и обозначают σпч в отличие от временного сопротивления σв для пластичных материалов.

Классификация машин

Машиной называется устройство, создаваемое человеком, выполняющее механические движения для преобразования энергии, материалов и информации с целью полной замены или облегчения физического и умственного труда человека, увеличения его производительности. Под материалами понимаются обрабатываемые предметы, перемещаемые грузы и т. д.

Основные требования к машинам и деталям. Потребности производства, имеющего основной целью всемерное неуклонное повышение благосостояния трудящихся, определяют основные тенденции в развитии советского машиностроения: увеличение производительности и мощности машин, скоростей, давлений и других показателей интенсивности технологических процессов, повышение к. п. д. машин, уменьшение их массы и габаритов, широкую автоматизацию управления машинами, повышение их надежности и долговечности, снижение стоимости изготовления, повышение экономической эффективности эксплуатации, удобства и безопасности обслуживания.

Краткие сведенья о стандартизации и взаимозаменяймости деталей машин Стандартизацией называется установление обязательных норм, которым должны соответствовать типы, сорта (марки), параметры (в частности, размеры), качественные характеристики, методы испытаний, правила маркировки, упаковки, хранения продукции (сырья, полуфабрикатов, изделии).

Кривошипно-шатунный механизм служит для преобразования вращательного движения кривошипа в возвратно-поступательное прямолинейное движение ползуна, Наоборот, когда ведущим звеном является ползун, возвратно-поступательное прямолинейное движение ползуна преобразовывается во вращательное движение кривошипа и связанного с ним вала.

Кулачковые механизмы применяют в тех случаях, когда перемещение, скорость и ускорение ведомого звена должны изменяться по заранее заданному закону, в частности, когда ведомоэ звено должно периодически останавливаться при непрерывном движении ведущего звена.

Храповые механизмы Прерывистое движение в одну сторону чаще всего осуществляется при помощи храповых и мальтийских механизмов.

Фрикционные передачи Назначение и особенности фрикционных передач Кинематические соотношения во фрикционных передачах

Виды зубчатых передач. Передаточное отношение Наиболее распространенные передачи в современном машиностроении — зубчатые передачи. Основные их достоинства — высокий к.п.д., компактность, надежность работы, простота эксплуатации, постоянство передаточного отношения, большой диапазон передаваемых мощностей (от тысячных долей до десятков тысяч киловатт). Рассмотрим кинематику зубчатой передачи

Червячные передачи Общие сведения. Передаточное отношение и к. п. д Для передачи движения между валами, оси которых перекрещиваются, применяются червячные передачи. Угол перекрещивающихся осей обычно равен 90°. Основные достоинства червячной передачи, обусловившие ее широкое распространение в различных отраслях машиностроения.

Ременные передачи Устройство ременных передач. Виды приводных ремней Передачу вращательного движения с одного вала на другой при значительных расстояниях между ними можно осуществить гибкой связью, используя силу трения между поверхностью шкива и гибким телом. Гибкой связью служат ремни. К достоинствам плоскоременной передачи относятся: простота и низкая стоимость конструкции; плавность хода, способность смягчать удары (благодаря эластичности ремня) и предохранять приводимые в движение механизмы от поломок при внезапных перегрузках (за счет пробуксовывания ремня); возможность передачи мощности при значительных расстояниях между осями ведущего и ведомого валов; бесшумность работы (по сравнению с зубчатой передачей); простота ухода и обслуживания.

Цепные передачи Особенности и область применения цепных передач Цепная передача относится к числу передач с промежуточным звеном (гибкой связью).

Краткие сведения о редукторах Обширный класс машин составляют производственные машины, которые преобразуют механическую работу, получаемую от двигателя, в работу, связанную с выполнением определенных технологических процессов. К ним, в частности, относятся машины по обработке металлов, древесины, почвы и др.

Конструктивные формы осей и валов Детали, на которые насажены вращающиеся части (шкивы, зубчатые колеса и т. п.), называются осями или валами. Оси и валы различаются между собой по условиям работы. Оси, несущие на себе вращающиеся части, не передают моментов и подвергаются только изгибу; валы, являясь, как и оси, поддерживающими деталями, помимо того, передают момент и работают не только на изгиб, но и на кручение.

Шпоночные и зубчатые (шлицевые) соединения Шпонкой называют стальной стержень, вводимый между валом и посаженной на него деталью — зубчатым колесом, шкивом, муфтой — для взаимного соединения и передачи вращающего момента от вала к детали или от детали к валу. Призматические шпонки не имеют уклона

Подшипники скольжения Для поддержания осей и валов с насаженными на них деталями и восприятия действующих на них усилий служат специальные опоры: подшипники, нагружаемые радиальными силами, и подпятники, нагружаемые осевыми силами. По характеру трения рабочих элементов опоры разделяют на опоры скольжения и опоры качения (шариковые и роликовые подшипники).

Подшипники качения — стандартные изделия, которые изготовляются в массовом количестве на специализированных заводах

Назначение и классификация муфт Муфтами называюи устройства, служащие для соединения валов между собой или с деталями, свободно насаженными на валы (зубчатые колеса, шкивы), с целью передачи вращающего момента. Муфты делятся на сцепные и постоянные. Сцепные муфты бывают фрикционные и кулачковые Жесткие и упругие компенсирующие муфты применяют для компенсации погрешностей в относительном положении и соединяемых валов; смещения центров; взаимного наклона осей; осевого смещения. Возможность компенсировать тот или иной вид отклонений зависит от конструкции муфты. Сцепные и предохранительные муфты Сцепные муфты предназначены для соединения и разъединения валов во время вращения (на ходу) или во время остановки (в покое)

Соединение деталей Заклепочные соединения Соединения деталей машин бывают неразъемными и разъемными. Разъемные соединения (болтовые, шлицевые и др.) могут быть разобраны и вновь собраны без разрушения деталей. Неразъемные соединения (заклепочные, сварные и др.) могут быть разобраны лишь путем разрушения элементов соединения.

Сварные соединения В современном машиностроении и строительстве широкое применение получили неразъемные соединения, осуществляемые при помощи сварки. Изобретателями электросварки являются русские инженеры Н.Н. Бенардос (1882 г.) и Н.Г. Славянов (1888 г.). Научно обосновали методы электросварки академики В.П. Никитин и Е.О. Патон и проф. В.П. Вологдин. Автоматическая сварка создана академиком Е.О. Патоном (1870—1953 гг.). Работы Е.О. Патона с огромным успехом продолжает его сын академик Б. Е. Патон.

Соединение пайкой В некоторых случаях для создания неразъемного соединения применяют пайку (например, для соединения тонкостенных деталей, элементов электрических схем и др.).

Резьбовые соединения Общие сведения о резьбах. Широко применяемые резьбовые соединения осуществляются с помощью болтов, винтов, шпилек, стяжек, резьбовых муфт и т. п. Основным элементом резьбового соединения является винтовая пара. Конструкции резьбовых соединений Резьбовые соединения осуществляются с помощью резьбовых крепежных изделий, которые чрезвычайно разнообразны по своей форме и назначению. К ним относятся болты, винты, шпильки, гайки, детали трубопроводов.

Математика , физика курсовая, информационные системы. Машиностроительное черчение