Примеры выполнения заданий по дисциплине Теоретические основы электротехники

Алгоритмы маршрутизации
Мультикомпьютеры
Выбор топологии вычислительной системы
Сбои в персональных компьютерах
Запись на диски и в файлы
Процессы и ресурсы
Балансировка вычислительной
нагрузки процессоров
Математическая статистика
Предел функции Интегрирование
Решение интегралов
Вычисление двойных и тройных интегралов
Курсовая на вычисление интеграла
Формула Тейлора для ФНП
Производная сложной ФНП
Интегрирование функций нескольких переменных
Геометрические свойства интеграла ФНП
Типовые задачи
Вычислить интеграл
Вычислить момент инерции
Вычислить повторный интеграл
Решения задачи Коши
Метод Эйлера
Оформление сборочного чертежа
Изображения
Способы преобразования чертежа
 Нанесение размеров
Аксонометрические проекции
Резьбы, резьбовые изделия
Разъемные соединения
Неразъемные соединения
Шероховатость поверхности
Сборочный чертеж
Деталирование чертежей
Решение задач по физике примеры
Электротехника
Оптика
Билеты к экзамену по физике
Теория электромагнитного поля
Элементы электрических цепей
Промышленная электроника
Цифровая электроника
Теоретические основы электротехники
Сопротивление материалов
Метод сечений
Перемещения и деформации
Общие принципы расчета конструкции
Моменты инерции сечения
Кручение бруса
Определение опорных реакций
Момент сопротивления
Метод начальных параметров
Косой изгиб
Внецентренное растяжение и сжатие
Теории прочности
Метод сил
Расчет на усталостную прочность
Задача Эйлера
Формула Ясинского
Определение прогиба и напряжений
Запас усталостной прочности
Основы теории упругости
Основы теории пластичности
Рождение абстрактного искусства
Художники эпохи Просвещения
Теоретическая механика

 

Сборник включает задания по дисциплине «Теоретические основы электротехники», являющейся базовой для специальности – электроснабжение промышленных предприятий. Содержание сборника отражает коллективный опыт преподавания курса ТОЭ на кафедре Электроснабжения промышленных предприятий. Учтён также опыт кафедр, теоретических основ электротехники и теории электрических цепей ведущих электротехнических вузов страны. Материал, используемый при составлении заданий, соответствует разделам действующей программы дисциплины «Теоретическая электротехника» для высших учебных заведений.

Расчёт электрического поля, усилий, энергии и электрических параметров простейших конструкций Целью задания является закрепление теоретического материала, излагаемого в первой части курса – физические основы электротехники (ФОЭ). Теоретическая часть расчётов базируется на уравнениях поля в интегральной форме. Особенности конструкций элементов (сферическая и цилиндрическая симметрия) существенно упрощают расчётную часть и позволяют при выполнении задания сосредоточить внимание на физической стороне процессов.

Пример выполнения задания

Расчёт полной электрической энергии конденсатора

Определение выражения для электрической ёмкости конденсатора на единицу длины

Расчёт магнитной цепи с магнитопроводом постоянной магнитной проницаемости Целью задания является закрепление теоретического материала, изложенного в первой части курса – физические основы электротехники (ФОЭ). Теоретическая часть расчётов базируется на интегральных понятиях магнитной цепи: магнитном потоке, магнитном напряжении, магнитодвижущей силе (м.д.с.) и других. Предлагается линейный вариант магнитной цепи, т.е. пренебрегается зависимостью магнитной проницаемости среды (ферромагнитного материала) от напряжённости магнитного поля.

Пример выполнения расчётно-графического задания

Законы Кирхгофа и расчёт резистивных электрических цепей Целью задания является закрепление теоретического материала, излагаемого в первой части курса – в разделе « методы расчёта линейных электрических цепей». Заданием предусмотрена отработка расчётных приёмов, основанных на использовании: законов Кирхгофа, принципа наложения, сворачивания цепей со смешанными соединениями ветвей, простейших преобразований резистивных цепей, а так же расчёта резистивных цепей методами контурных токов, узловых напряжений и эквивалентного генератора.

Второй закон Кирхгофа

Преобразования схемы звезда треугольник

Принцип наложения

Метод узловых напряжений При расчёте цепи методом узловых напряжений неизвестными в системе уравнений будут узловые напряжения uk0 (иногда обозначается одним индексом uk), равные разности потенциалов k-го и нулевого (базисного) узлов. Потенциал нулевого узла принимается равным нулю, а номер выбирается произвольно. Число неизвестных и уравнений должно быть равно числу узлов цепи минус единица.

Метод эквивалентного генератора.

Пример выполнения расчётно – графического задания Для цепи, схема которой изображена на рисунке 3.7, составить необходимое число структурных и компонентных уравнений, для определения токов ветвей. Все источники и параметры элементов считать заданными.

Пример выполнения расчётно – графического задания часть 2 В цепи, схема которой приведена на рисунке 3.8 а определить ток i3 при заданных значениях параметров схемы: r = r1 = r2 = 2 Ом, r3 = 4 Ом, e1 = 4 В.

Расчет методом контурных токов

Расчет методом узловых напряжений Цепь содержит 4 узла, следовательно, система уравнений по методу узловых напряжений должна состоять из трёх уравнений. Однако, в конкретной схеме при определении коэффициентов неизбежно возникнет трудность. Существо её в том, что ветвь с идеальным источником напряжения имеет нулевое сопротивление, т.е. бесконечно большую проводимость

Расчет методом эквивалентного генератора

Расчет методом наложения Найдём частичные токи через сопротивление r1, от каждого источника в отдельности, заменяя исключённые источники их внутренними сопротивлениями.

Расчёт линейных электрических цепей при гармоническом (синусоидальном) воздействии

Основные законы электрических цепей в комплексной форме

Баланс активных мощностей Целью задания является отработка техники расчёта гармонических установившихся режимов в линейных электрических цепях, закрепление теоретического материала в части применения комплексного метода и построения векторных диаграмм гармонического процесса. Заданием предусмотрена отработка расчётных приёмов сворачивания цепи со смешанным соединением r,L,C – элементов к одному эквивалентному параметру (комплексным сопротивлению или проводимости). Задание содержит проверку баланса активных и реактивных мощностей.

Пример выполнения расчётно-графического задания

Определение полного тока

Построить в выбранных масштабах для тока и напряжения векторные диаграммы

Баланс активных и реактивных мощностей

Расчёт трёхфазных электрических цепей Расчётно-графическое задание предназначено для закрепления теоретического материала по теме «многофазные электрические цепи». Целью задания является отработка техники расчёта симметричных и несимметричных, гармонических, установившихся режимов в трёхфазных электрических цепях. Задание так же содержит расчёт активных и реактивных мощностей трёхфазных приёмников электрической энергии.

Пример выполнения расчётно-графического задания

Топографическая диаграмма напряжений

Формирование уравнений сложных r,L,C - цепей . и расчёт установившегося гармонического (синусоидального) режима В задание включены задачи для расчёта электрических цепей сложной конфигурации с синусоидальными источниками электрической энергии. Целью задания является отработка расчётных приёмов, подробно рассмотренных в предыдущих заданиях, в частности, задания №4 в части использования комплексного метода расчёта электрических цепей. Топология цепей в задании соответствует топологии цепей в задании №3, но кроме резистивных элементов цепи содержат индуктивности и ёмкости.

Метод узловых напряжений Метод эквивалентного генератора Идея метода достаточно подробно изложена в РГЗ №3. Как и при использовании метода контурных токов, применение метода узловых напряжений для расчёта гармонического режима требует записи всех уравнений в комплексной форме.

Метод контурных токов пример выполнения задания

Решить задачу методом узловых напряжений Цепь содержит 4 узла, следовательно, система уравнений по методу узловых напряжений должна состоять из трёх уравнений. Однако, в схеме на рис. 6.4 есть ветвь с идеальным источником напряжения, который имеет нулевое сопротивление, т.е. бесконечно большую проводимость.

Решить задачу методом эквивалентного генератора

Математика , физика курсовая, информационные системы. Машиностроительное черчение