Математика Курс лекций по информатике Машиностроительное черчение Решение задач по физике Теоретические основы электротехники Сопротивление материалов История искусства Ядерные реакторы
Элементы электрических цепей Приемники электрической энергии Комплексное сопротивление Резонансные свойства Трехфазные электрические цепи Магнитные цепи Трансформаторы Промышленная электроника Полупроводниковые приборы

Теория электрических цепей (основы электротехники)

К основным характеристикам элементов цепи относятся их вольт-амперные, вебер-амперные и кулон-вольтные характеристики, описываемые дифференциальными или (и) алгебраическими уравнениями. Если элементы описываются линейными дифференциальными или алгебраическими уравнениями, то они называются линейными, в противном случае они относятся к классу нелинейных.

Комплексное сопротивление и проводимости элементов электрических цепей

Комплексное сопротивление

 Введение комплексного представления токов и напряжений требует определить и сопротивление элементов электрических цепей в комплексной форме - Z.

 Хороши известно, что сопротивление резистора определяется как отношение напряжения на резисторе к току, протекающему через него. Если напряжение и ток представлены в комплексной форме, то

Но на предыдущей лекции было установлено, что . Поэтому

  (3.1)

Таким образом видим, что комплексное сопротивление резистора выражается только действительным числом. Оно не вносит фазовых искажений между токами и напряжением. Чтобы подчеркнуть этот факт такое сопротивление часто называют активным.

  Комплексное сопротивление емкости определяется отношением

.  (3.2)

Видим, что комплексное сопротивление емкости переменному току выражается мнимым числом. Мнимая единица -j физически определяет сдвиг фаз между током и напряжением на 90о. Это хорошо согласуется с ее максимальным значением

Поэтому на емкости напряжение отстает от тока на 90о. Это означает, что сначала растет ток, протекающий через конденсатор, затем, с некоторым отставанием увеличивается заряд и напряжение.

 Коэффициент 1/ определяет величину сопротивления в Омах. Он обратно пропорционален частоте, называется емкостным сопротивлением и обозначается ХС, т.е.

. (3.3)

 Комплексное сопротивление индуктивности определяется отношением

.  (3.4)

И в этом случае сопротивление выражается мнимым числом. Но так как это число положительное, то это означает, что на индуктивности напряжение опережает ток на 90о.

Коэффициент wL определяет величину сопротивления в Омах. Он пропорционален частоте, называется индуктивным сопротивлением и обозначается ХL, т.е.

.  (3.5)

Чтобы подчеркнуть тот факт, что сопротивления емкости и индуктивности выражаются мнимыми числами, их называют реактивными сопротивлениями, а конденсатор и индуктивность - реактивными элементами цепи.

 Определим теперь комплексное сопротивление электрической цепи, содержащей активные и реактивне элементы, например последовательно включенные R, L и С элементы (рис.3.1). Такая цепь представляет замкнутый контур, поэтому для нее справедлив второй закон Кирхгофа

.  (3.6)

В последнем выражении проведем замену символов мгновенных напряжений и ЭДС на их комплексные изображения по правилам, определенным в лекции 1.2. Такой прием получил название символического метода. Так как ток протекающий через все элементы последовательной цепи одинаков, то (3.6) приходит к виду

  Преобразуем это выражение к виду

.

  По определению выражение в правой части последнего равенства есть ни что иное, как комплексное сопротивление цепи рис.3.1, т.е.

  (3.7)

где R - действительная часть или активное сопротивление цепи.

- мнимая часть или реактивное сопротивление цепи.

 Выражение (3.7) представляет комплексное сопротивление в алгебраической форме. Соотношения между составляющими комплексного сопротивления находятся в полном соответствии с соотношениями для комплексного представления тока. Но для большей наглядности вводится понятие треугольника сопротивления (рис.3.2).

В треугольнике - гипотенуза определяется модулем комплексного сопротивления Z, причем

  (3.8)

Противолежащий катет - реактивным сопротивлением X, причем

  (3.9)

Угол определяет сдвиг фаз между током и напряжением, который вносится комплексным сопротивлением цепи, причем

  (3.10)

 Учитывая выражения (3.8) ¸ (3.11) легко перейти от алгебраической к тригонометрической форме комплексного сопротивления

Z  (3.12)

a применив формулу Эйлера получить показательную форму

 Z  (3.13)

 Теперь можно записать закон Ома для участка цепи без источника ЭДС в комплексном изображении

  (3.14)

Выражение (3.14) показывает, что в цепях переменного тока модуль тока определяется отношением модуля напряжения (его амплитудного значения) к модулю комплексного сопротивления, а фаза тока определяется разностью фаз напряжения и комплексного сопротивления. Отсюда вытекает еще одно полезное для практики выражение

.  (3.15)

Комплексна проводимость

 В цепях постоянного тока проводимость резистора определяется отношением тока к напряжению:

Эта величина обратно пропорциональна сопротивлению.

 В цепях переменного тока следует пользоваться понятием комплексной проводимости, которая обозначается Y и, в общем случае, содержит действительную G и мнимую В части:

Как и в цепях постоянного тока комплексная проводимость участка цепи обратна комплексному сопротивлению, т.е.

Отсюда

  ,  ,   , (3.16)

где Y - модуль комплексной проводимости.

 Соотношение между составляющими комплексной проводимости аналогичны соотношениям между составляющими комплексного сопротивления.

Комплексная проводимость резистора

  (3.17)

Комплексная проводимость конденсатора

  . (3.18)

Комплексная проводимость индуктивности

  . (3.19)

 В заключение отмети, что комплексное сопротивление удобно применять для анализа участков электрической цепи с последовательным включением элементов, а комплексную проводимость - для участков с параллельным включением элементов.

Индуктивный элемент (катушка индуктивности) Условное графическое изображение катушки индуктивности приведено на рис. 2,а. Катушка - это пассивный элемент, характеризующийся индуктивностью. Для расчета индуктивности катушки необходимо рассчитать созданное ею магнитное поле.
Метод узловых и контурных уравнений